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1

Introduction to FPU

G. Gallavotti

Università Roma La Sapienza, Dipto. di Matematica, Piazzale Aldo Moro, 200185
Roma, Italy
giovanni.gallavotti@roma1.infn.it

1.1 The FPU Experiment and Its Ramifications

The FPU experiment opened the way to molecular dynamics simulations as
well as to the use of computers to study fundamental questions on the foun-
dations of Statistical Mechanics.

In the 1960s–1970s most efforts were concentrated on equilibrium statis-
tical mechanics (the theory of phase transitions and of the critical point with
the important successes of the Renormalization Group), but at the same time
a strong attention was dedicated to the original scope of Fermi, namely to
understand the ergodic hypothesis and its apparent contradiction with the
results of the FPU experiment.

It is well known that Fermi started his scientific publications with a study
of the ergodic hypothesis and with a “proof” of generic ergodicity [1]. The
proof was incomplete because it only proved, extending an argument by
Poincaré, that no smooth surface could divide phase space into two regions
containing open sets. Even though he probably realized that there was a prob-
lem with the proof of his far more general claim, he was certainly not convinced
and, around 1953–54, he started the experiment to check the idea that essen-
tially any nonlinearity would lead to a system satisfying the ergodic hypothe-
sis. The Hamiltonian of the systems of N oscillators r = (px, rx), x = 1, ..., N ,
considered by FPU was (N = 64, r0 = rN = 0)

N−1∑

x=0

p2
x

2m
+

N∑

x=1

1
2
(
rx+1 − rx

)2 +
α

3
(rx+1 − rx)3 +

β

4
(rx+1 − rx)4 .

The outcome was quite against the conjectured conclusion and a new era
was opened to understand why the tempting explanation of ergodicity as
due to “any” (reasonable) nonlinearity failed. Several developments followed
as consequences of the attempts to clarify the above “FPU phenomenon”;
perhaps the main one was the realization that the FPU dynamics could be
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2 G. Gallavotti

approximated, at least if the initial conditions were close to certain special ones
(“long waves”), by an integrable partial differential equation whose integrals
of motion would only be approximate integrals of the FPU equations, but
which could remain almost constant for long times. Several aspects of this
development, started by M. Kruskal and N. Zabusky [2], are represented in
the reviews in this collection.

Another attempt was to appeal to the KAM theorem, discovered at about
the same time of the FPU experiment; the theorem seemed to offer a natural
explanation to the phenomenon of the apparent lack of ergodicity: for low
enough energy the FPU model would show quasi periodic motions whose
initial data would fill most of phase space [3].

The explanation was soon realized to be untenable: the energy had to be
too close to a minimum if the KAM estimates (known since Kolmogorov’s
work and, for chains or lattices of oscillators, not greatly improved since) had
to guarantee quasi periodic motions. And worse, the closeness to a minimum
value had a strong dependence on the number N of oscillators (i.e. it decreased
to 0 exponentially in N at least). Not to mention that a proof of applicability
of the KAM theorem to the FPU model was not general enough to cover all
the interesting cases; in this respect the proof that at the very low energy
most motions were quasi periodic has been eventually completed in all details
[4], but it has not added new direct information about the explanation of the
FPU results.

The question of why the FPU motions did not show ergodic behavior
underwent a long period of research, and it was soon suggested that at small
energy equipartition could be essentially true only for what concerned the part
of the energy that was located in the normal modes with longest wavelength
[5]. However the meaning of “essentially” gradually evolved into a problem of
time scales: the energy could not stay confined to the longest wavelength (if
initially it was concentrated there) forever [5]. After a transient time equipar-
tition would be reached; but the transient time had a stretched exponential
dependence on the energy above a minimal one.

1.2 A Guided Tour of This Volume

The initial idea for this volume emerged quite some time ago, at the conference
“FPU fifty years later” (“FPU cinquanta anni dopo”) which took place in
Rome in June of 2004, at the Physics Department of “La Sapienza.” All the
questions briefly outlined in the previous section were addressed and debated
and are to some extent reflected by the various contributions collected here
as substantial and carefully edited extensions of the lectures delivered.

The order of the contributions reflects the aim of preparing the interested
but unexperienced reader through a gradual understanding starting from gen-
eral analysis and proceeding towards more specialized topics.
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In the contribution by Lichtenberg et al. [6] a study of one-dimensional
chains is performed: it presents an approach different with respect to the one
in the subsequent reviews [5, 7]. More attention is dedicated to the equiparti-
tion following initial data that have short wavelength and other fundamental
problems are studied; like theory of Lyapunov exponents and heat transport in
FPU or more general lattices (like Klein–Gordon lattices). The authors often
make the attempt to present heuristic theories. The approach of this work
is also interesting for its personal touch: it shows, if compared to the other
reviews, that the subject is so rapidly developing that the historic perspective
of different groups can be remarkably different even when dealing with the
same physical phenomena. I have decided not to try to invite the authors of
this and of the other reviews to make the various viewpoints agree, a possibly
unrealistic aim, but to leave the papers as the authors decided to write them
so that readers could see by themselves how different the perspectives can be.

The general introduction ends with a description of numerical methods,
like the definition and use of equipartition indicators to study the problems
of low energy and long wave length or Lyapunov exponents. For the latter
a heuristic theory is presented: it appears to give extremely good agreement
with simulations and therefore it leaves us with a challenge to understand why.

Such aspects are stressed and developed also in the review by Cencini
et al. [8] where the question of the “long standing and controversial problem
of distinguishing chaos from noise in signal analysis” is first discussed. And it
is interesting as it would seem that this is an impossible task, if understood in
its literal meaning. Then the authors discuss the importance of Chaos for the
theory of macroscopic transport properties (in systems not necessarily close to
a ground state). The idea is presented that, after all, Chaos is not as important
as many, including the writer, think it is; it is not necessary even if one limits
oneself to understanding the simplest macroscopic transport properties and
nonequilibrium phenomena.

In reality by Chaos the authors mean a signal emitted by a dynamical
system which has positive finite Kolmogorov–Sinai (or “KS”) entropy (i.e. es-
sentially a system with bounded phase space) and by noise—a signal emitted
by a dynamical system which has infinite KS-entropy. The second question
is the relevance of Chaos for diffusion and heat conduction; the conclusion
reached is that it is not necessarily relevant as shown by way of a few ex-
amples. The discussion, supported by simulations, may not be convincing for
every reader but it is certainly stimulating as the given examples are witty
and have theoretical interest, being different from the trivial remark that all
numerical simulations are, strictly speaking, necessarily nonchaotic although
they provide effective means to exhibit chaos properties.

Metastability, i.e. the approach to equipartition within an “exponential”
time scale, is discussed by [4] in great detail for one-dimensional chains, the
classical FPU case, together with results that are by now classical, thanks
mainly to the work of the authors. It clearly emerges that even at small
energy, equipartition appears to be eventually reached; however, the time scale



4 G. Gallavotti

increases as a stretched exponential in the inverse of the energy in excess over
its minimum. Thus if the initial data have a specific energy below a suitable
threshold the motion is metastable in the above sense, while for energies above
the threshold the motion approaches equipartition on a time scale of the order
of an inverse power of the specific excess energy over the ground state. This is
a result on which there seem to be few doubts since the 1980s. It is an aspect
of the FPU motions which goes far beyond the analysis in the subsequent [9];
but there is no mathematical result that allows realistic estimates (i.e. close,
conceptually, to the results suggested by the numerical simulations).

Unfortunately the authors have chosen not to discuss one of the most
interesting developments that were presented at the conference; namely, the
fact that this picture might be strongly dimension dependent. In the FPU
lattices of higher dimension (i.e. with x located on a lattice Zd of dimension
d ≥ 2 rather than on Z as above) the time scale for the equipartition at low
energy seems to be very fast, i.e. to increase, as the energy E approaches its
minimum, as a power in E−1 (rather than a stretched exponential appearing
in the d = 1 case). In this sense Fermi’s idea that any perturbation would turn
a system of harmonic oscillators into an ergodic system would be vindicated.
It seems that we shall have to wait a little more time to be sure of this new
scenario, which would make the dimension play a key role in the problem
of equipartition, making the case of dimension 2 a “marginal case” and the
dimension 3 (or more) cases as cases in which the behavior follows the most
naive scenario about equipartition, i.e. an approach on a time scale of the
order of an inverse power of E, even at low energies.

The authors present the problems from their personal historical perspec-
tive: which is very interesting because most of the work described was devel-
oped by them, and achieved in spite of a sometimes strong criticism.

It should be stressed that so far the metastability scenario is not proved in
any case, at least not as rigorously as such an important issue would deserve.

The relation of the FPU motions t → rx(t) with the integrable equa-
tions is examined by Bambusi and Ponno [9] from the point of view of recent
developments in perturbation theory and the results of Kruskal and Zabusky
are interpreted (and extended to more general equations) determining condi-
tions for the possibility of explaining the FPU “recurrences” in terms of an
approximating the FPU motions with solutions of integrable PDE equations.
If ε def= E

N is the value of the energy of the lowest momentum mode divided by
the number of particles then μ = ε

n−2
4 is a good scaling parameter for solu-

tions of the form rx(t) = μ
2

n−2u(μx, μt) with a nonlinearity U(r) = 1
2r

2 + rn

n ,
n being an integer parameter n ≥ 3. The review studies the FPU lattice
with periodic boundary conditions (r0 = rN rather than r0 = rN = 0) and
distinguishes between

(a) long-time concentration of the solution on low lying modes: i.e. closeness
to the solution of the PDE that u(ξ, τ) satisfies to lowest order in μ in the
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formal limit μ→ 0. The latter approximates the solution rx(t) for a time
of the order of an inverse power of ε; or the stronger property:

(b) metastability: i.e. closeness to the solution of the PDE that u(ξ, τ) satisfies
to lowest order in μ in the formal limit μ→ 0; it approximates the solution
rx(t) for a time of the order of a stretched exponential of ε, O(e+bε−a

) for
some a, b > 0.

The reported (new) result is the validity of (a) as an application of the
so called averaging method: (a) is proved for the case n = 3. In this case
also metastability is conjectured (but not proved) to be a consequence of the
integrability of the PDE associated with the leading order as τ → 0; and if so
metastability would also imply quasi periodicity of the motion, hence possibly
the “recurrence” phenomena discovered in the FPU experiment.

For the higher n cases, property (a) should hold (but this is not proved) for
n = 4, 5 (and if n = 4 then it should also imply metastability and recurrence
because the PDE is still integrable). The general conjecture is that in fact
metastability (i.e. property (b)) occurs as long as the PDE formally satisfied
by u does not lead to a blow up of the solution in a finite time. The authors
conjecture therefore that for n ≤ 5 there is metastability, while for n ≥ 7
(where blow up is established) it holds at most as long as there is no blow up.
The case n = 6 is a critical case and the results could depend on the initial
data in a stronger way.

The next review is by James and Sire [10] with the analysis of the recurrent
motions and of the approximability of solutions of FPU type of systems by
simpler systems can also be studied, without trying to connect them with
integrable PDEs by the methods of perturbation theory, in alternative to
[9]. The method links the simplicity of certain motions of FPU-like systems
to the possibility of describing them by simple ODEs with few degrees of
freedom via the methods of bifurcation theory; such motions develop on small
dimension invariant manifolds. The theory leads to a systematic analysis of
special kinds of motions, “breathers and travelling breathers” [10]. This is
an approach which follows classical paths of bifurcation theory and is an
interesting development parallel and complementary to the approach in the
review [9].

It explains some of the FPU phenomena and stands on the use of extensions
to infinite dimension of the center manifold theorems. It is important to stress
that the motions that are found by the authors are quite different from the
ones that are associated with long wavelength initial data (i.e. of the kind
considered in the papers [5, 9]) because the energy is not concentrated on
long wavelengths but should be regarded as distributed in packets involving
modes of all wavelengths and producing wave forms with strong localization
properties (breathers are localized in space and therefore delocalized in their
momentum components).

In the contribution by Paleari and Penati [7] the methods of analysis
of the one-dimensional chains are described in great detail and the chaotic
motions are described in quantitative detail. In the frame of the research on
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the threshold for metastability several chaotic motions properties that develop
and eventually lead to equipartition have been studied; for instance, the en-
ergy can be shared by various collections of modes which can be divided into
energy sharing groups, whose energies become equalized on the same time
scale. The time scales are systematically studied via an accurate analysis of
the Lyapunov exponents of the motions. The authors review the numerical
algorithms used for the analysis and the criteria for quantitative estimates of
the “equipartition degree” of the energy in the waves on a given group. The
studies are not confined to the initial data of “FPU type,” i.e. with energy con-
centrated on long wavelengths, and they discuss the energy flow from many
initial data thus providing results that at least in principle may relate the
regimes considered in [5, 9, 10]. The question of how to measure the degree of
energy sharing within “clusters of modes” requires the use of “sharing indica-
tors” and leads to evidence that the low energy evolutions show metastability
phenomena not only if the initial data have long wavelength but also if they
have, instead, short wavelength. However the exponentials time scales are not
described by stretched exponentials with the same stretching exponent, but
the exponent is smaller for the short wavelengths.

The series of reviews is completed by B. Rink [11] with a description of the
recent work [4], proving the applicability of KAM theory in FPU chains with
energy very close to a minimum: this leads to a full realization of a program
initiated by Nishida [12] who solved it under a condition that could be checked
only exceptionally. The problem was completely solved only recently with the
paper reproduced here in extended version and covering the fixed extremes
boundary conditions (the periodic boundary conditions had been solved ear-
lier). It is important to keep in mind that most of the results that have been
obtained on FPU, including in particular the ones mentioned in the collec-
tion edited here, are not mathematically completely proved; therefore, it is of
interest to present one of the few complete results on the subject, i.e. the ap-
plicability of the KAM theory to the actual FPU system at energy extremely
close to the ground state energy. Even though the closeness to the minimum
energy is so tiny (and infinitesimal as N → ∞) to be of little physical in-
terest in the interpretation of the FPU experiment the result is not obvious,
and is nontrivial, because the FPU system has symmetries, which generate
degeneracies in the frequency spectra of the motions of very low energy (not
only in their harmonic approximation but also in their simplest averaged ver-
sions): and degeneracies correspond to “resonances” and resonances are the
key difficulty (as well as source of interesting behavior) in the KAM theory.

Given the importance of the FPU system it is surprising that the concep-
tual problem of KAM applicability, even if only in principle, was left with
several open questions for so many years: the reason has to be found, possi-
bly, in the distrust that physicists have consistently shown towards the KAM
results, considered not only esoteric but also quite irrelevant given the orders
of magnitude of the time scales involved.
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The original work of FPU is easy to find it in the libraries: but the readers
may find it useful and stimulating to have it ready at hand while getting the
glimpse, offered here, of the vast literature that it has influenced. For this
reason the paper is appended to this introduction.

Roma: April 2007 Giovanni Gallavotti
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Abstract. The Fermi–Pasta–Ulam (FPU) nonlinear oscillator chain has proved to
be a seminal system for investigating problems in nonlinear dynamics. First proposed
as a nonlinear system to elucidate the foundations of statistical mechanics, the initial
lack of confirmation of the researchers expectations eventually led to a number of
profound insights into the behavior of high-dimensional nonlinear systems. The ini-
tial numerical studies, proposed to demonstrate that energy placed in a single mode
of the linearized chain would approach equipartition through nonlinear interactions,
surprisingly showed recurrences. Although subsequent work showed that the origin of
the recurrences is nonlinear resonance, the question of lack of equipartition remained.
The attempt to understand the regularity bore fruit in a profound development in
nonlinear dynamics: the birth of soliton theory. A parallel development, related to
numerical observations that, at higher energies, equipartition among modes could
be approached, was the understanding that the transition with increasing energy is
due to resonance overlap. Further numerical investigations showed that time-scales
were also important, with a transition between faster and slower evolution. This
was explained in terms of mode overlap at higher energy and resonance overlap at
lower energy. Numerical limitations to observing a very slow approach to equiparti-
tion and the problem of connecting high-dimensional Hamiltonian systems to lower
dimensional studies of Arnold diffusion, which indicate transitions from exponen-
tially slow diffusion along resonances to power-law diffusion across resonances, have
been considered. Most of the work, both numerical and theoretical, started from low
frequency (long wavelength) initial conditions.

Coincident with developments to understand equipartition was another program
to connect a statistical phenomenon to nonlinear dynamics, that of understanding
classical heat conduction. The numerical studies were quite different, involving the
excitation of a boundary oscillator with chaotic motion, rather than the excitation of
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the entire chain with regular motion. Although energy transitions are still important,
the inability to reproduce exactly the law of classical heat conduction led to concern
for the generiticity of the FPU chain and exploration of other force laws. Important
concepts of unequal masses, and “anti-integrability,” i.e. isolation of some oscillators,
were considered, as well as separated optical and acoustic modes that could only
communicate through very weak interactions. The importance of chains that do not
allow nonlinear wave propagation in producing the Fourier heat conduction law is
now recognized.

A more recent development has been the exploration of energy placed on the
FPU or related oscillator chains in high-frequency (short wavelength) modes and
the existence of isolated structures (breathers). Breathers are found as solutions to
partial differential equations, analogous to solitons at lower frequency. On oscillator
chains, such as the FPU, energy initially in a single high-frequency mode is found,
at higher energies, to self-organize in oscillator space to form compact structures.
These structures are “chaotic breathers,” i.e. not completely stable, and disintegrate
on longer time-scales. With the significant progress in understanding this evolution,
we now have a rather complete picture of the nonlinear dynamics of the FPU and
related oscillator chains, and their relation to a wide range of concepts in nonlinear
dynamics.

This chapter’s purpose is to explicate these many concepts. After a historical
perspective the basic chaos theory background is reviewed. Types of oscillators, nu-
merical methods, and some analytical results are considered. Numerical results of
studies of equipartition, both from low-frequency and high-frequency modes, are pre-
sented, together with numerical studies of heat conduction. These numerical studies
are related to analytical calculations and estimates of energy transitions and time-
scales to equipartition.

2.1 Historical Perspective and Background Theory

2.1.1 Motivation and Counter Intuitive Numerical Results

In the early 1950s, considering what numerical investigations could be per-
formed on a first generation digital computer at Los Alamos National Labo-
ratory, Enrico Fermi suggested to Stanislaw Ulam and John Pasta that the
foundations of statistical mechanics could be explored. He proposed using a
chain of coupled slightly nonlinear oscillators to show that the nonlinearity
would lead to equipartition of energy among the degrees of freedom. The
model used in the studies was a discretization of a nonlinear spring which to
quartic order is given by the normalized Hamiltonian

H =
N∑

i

[
p2
i

2
+

(qi+1 − qi)2
2

+ α
(qi+1 − qi)3

3
+ β

(qi+1 − qi)4
4

]
(2.1)

with N unit masses and unit harmonic coupling. The oscillator chain is known
as the Fermi–Pasta–Ulam (FPU) model. The original simulations were done
with only the α term present (FPU-α model) or only the β term present
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(FPU-β model); most subsequent simulations and analysis were done with
the FPU-β model. With periodic endpoints the chain is translationally invari-
ant, but the original simulations, as with much subsequent work, considered
fixed endpoints, related to a physical finite string. Without nonlinear terms
the coordinates can be transformed to uncoupled normal modes, such that the
energy is always confined to the initial modes in which it is placed. For small
nonlinearities (energy in the nonlinear terms small compared to the energy in
the linear terms) it is logical to place the energy in a mode (or modes) of the
linear system (quasi-modes of the nonlinear system) and observe the subse-
quent behavior of the mode energies subject to the laws of motion described
by the Hamiltonian in (2.1). The initial numerics, programmed by Mary Tsin-
gou for the FPU-α chain with fixed ends and N−1 moving particles, and with
all the energy placed in the first harmonic (k = 1) of the harmonic normal
modes

Qk =

√
2
N

N∑

i=1

qi sin
(
πik

N

)
(2.2)

(with N = 32 and α = 1/4) gave, for example, the result shown in Fig. 2.1
for Q1 = 4 (E = E1 = 0.077). The initial energy was transferred primar-
ily into the first four modes, with an approximate recurrence (within a few
percent) occurring in a time ω1t/2π = 157 fundamental periods. Similar re-
sults were obtained for other initial conditions for both the α and β models,

Fig. 2.1. FPU original mode oscillations
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with the results presented in a Los Alamos report in 1955. Unfortunately,
the untimely death of Fermi, prevented regular publication until the work
appeared in Fermi’s collected works [1]. The simulations did not answer the
question of whether equipartition would ultimately be obtained, as was pre-
dicted from general dynamical principles of the nonexistence of global isolating
integrals, see Poincaré [2], and the inferences used to support the concept of
ergodicity by Fermi himself [3, 4]. Most of the near-term response to the unex-
pected result was to try to explain the recurrences. Using perturbative analysis
Ford [5] and Jackson [6] obtained oscillations of the first few harmonics, with
Jackson’s approach, using nonlinearly perturbed frequencies, giving results,
including the recurrence times, quite similar to the numerical observations.
However, the perturbation procedures are nonconvergent, so no conclusions
can be drawn from them about long-time behavior. There has been a sig-
nificant body of literature concerned with these recurrences and methods of
analysis. Generalizations, for example, have considered energy initially in an
arbitrary mode (rather than the lowest frequency mode), the major couplings
identified, and the effect of various numbers of modes used in analyzing the
dynamics [7]. It was found, for example, that there is an induction period,
i.e. a time during which there is little change in mode energy, if the energy
is initially placed in a high-frequency mode, a condition later observed and
qualitatively explained (see below).

2.1.2 Chaos Theory: KAM Isolation, Arnold Diffusion, Lyapunov
Exponents, KS Entropy

Parallel to the developments, described above, for a high-dimensional Hamilto-
nian system, there were developments in low-dimensional Hamiltonian dynam-
ics that informed the oscillator-chain results, and ultimately were informed by
those results. In particular, the KAM theorem for coupled degrees of freedom
[8, 9, 10] indicated that the generic case was a divided phase space with reg-
ular and chaotic orbits interspersed. Numerical observations, in a surface of
section of a particular two degree of freedom system (the Hénon and Heiles
potential), indicated mostly regular orbits at low energy, with the chaotic
portion of the phase space increasing rather abruptly over a small range of
increasing energy, until most of the phase space is chaotic [11]. A practical
explanation of this rather abrupt increase was that local resonances between
frequencies of the two freedoms, which modified the structure of the phase
space in their neighborhood, would overlap with increasing energy, producing
large areas of chaotic motion [12, 13]. For systems with three or more de-
grees of freedom KAM surfaces cannot isolate chaotic regions: leading to the
possibility of “diffusion”, in the sense that there are initial data which can
reach points in phase space that are arbitrarily far, although such data have
a small microcanonical measure when the nonintegrable perturbation is small
[14]. Furthermore, a heuristic understanding of a many-dimensional system
with weak coupling, backed up by simulations (see [15], Sect. 6.5), indicated
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the fraction of the phase volume that is stochastic continually increases with
increasing number of freedoms N [16]. Another relevant theoretical result is
that the upper bound on the rate of Arnold diffusion is proportional to

exp
(

1
μq

)
(2.3)

where μ is a perturbation parameter [17] and an “optimal convergent” per-
turbation calculation gave a value of q ≈ 1/N [18, 19]. This result would
indicate that the diffusion becomes large if μ1/N ≈ 1, but the result, being of
perturbative type, does not extend to so large a perturbation. Other heuristic
forms will be used to estimate the diffusion rate in later Sections. Another de-
velopment in low-dimensional chaos, that would inform the high-dimensional
oscillator chain research, was the study of the three-particle Toda lattice [20],
with Hamiltonian

H =
p2
1 + p2

2 + p2
3

2
+ exp(−(q1 − q3)) + exp(−(q2 − q1)) + exp(−(q3 − q2))− 3

(2.4)
which corresponds to three particles moving on a ring with exponentially
decreasing repulsive forces between them. In addition to the energy, there is
a relatively obvious isolating integral, namely the total momentum, reducing
the motion to two degrees of freedom. The Henon–Heiles potential [11] is a
truncation of the Toda lattice. However, a surface of section of (2.4), calculated
numerically, showed no chaos [21] and Hamiltonian (2.4) was subsequently
proved to have a third invariant and thus was integrable, i.e. had nonchaotic
phase-space trajectories [22].

In order to obtain equipartition it is sufficient for the dynamics to be “er-
godic” on the energy shell, i.e. microcanonical averages over a given energy
surface and time averages over motions taking place over the same energy
surface must be equal. However, since it is physically relevant that the con-
vergence to equipartition should occur on a finite time, and be possibly fast,
the stronger dynamical property of “mixing” could be required. A direct nu-
merical check of both “ergodicity” and “mixing” is impossible in systems with
many degrees of freedom. However, if all trajectories are chaotic and, hence, on
the average exponentially separating, positive Kolmogorov–Sinai (KS) entropy
[23, 24] and exponentially fast “mixing” follow as a consequence. Therefore,
an obvious quantity to be examined is the largest Lyapunov exponent, giving
the average separation rate between nearby trajectories as

λ = lim
t→∞

1
t

ln
‖ξ(t)‖
‖ξ(0)‖ (2.5)

where ξ(t) is the tangent vector whose time evolution is described by the tan-
gent dynamics equation described in Sect. 2.3. A positive value of λ indicates
exponential separation of initially close trajectories, i.e. chaos. A difficulty of
realistic Hamiltonian systems is that, in generic conditions, the energy shell
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is “divided” into chaotic and ordered trajectories, and hence “mixing” can-
not occur everywhere in phase-space. Then, the qualitative statement might
be that, if almost all of the energy surface is characterized by an invariant
distribution that has a positive KS entropy, then, for all practical purposes,
equipartition will be reached. The numerical calculation of Lyapunov expo-
nents has been used extensively to test for chaotic motion, particularly after
the numerical techniques were formalized [25]. It was logical that the method
would be applied to the FPU chain, and became an important element in the
numerical investigations in the 1980s and beyond, as discussed in more detail
below.

For a more complete introduction to these topics see [15]: Sect. 3.2 (KAM
Theory); Sects. 5.2 and 5.3 (concepts of stochasticity) and Sects. 6.1 and 6.2
(Arnold diffusion). See also [13] and, more rigorously, [26].

2.1.3 Geometrization of Hamiltonian Dynamics

Without attempting to be exhaustive, a few historical comments might be
helpful to place the recent contributions about the geometrical approach to
dynamics which are reviewed in the present Chapter, in a more general con-
text.

The idea of looking at the collection of solutions of the Newton’s equa-
tions of motion from a geometric point of view dates back to Poincaré and to
the development of the qualitative theory of differential equations. Tackling
the famous problem of the integrability of the three-body problem, Poincaré
discovered that generic classical Hamiltonian systems, in spite of their deter-
ministic nature, lack predictability because of their extreme sensitivity to the
initial conditions. Such an instability of classical dynamics originates in homo-
clinic intersections, which Poincaré described in his Méthodes Nouvelles de la
Mécanique Céleste [2] without “even attempting to draw” them. The method
was later developed by Cartan among others, using what is now called sym-
plectic geometry [27]. Although of undeniable elegance, symplectic geometry
is not very helpful to advance our knowledge about the regions in phase space
where the dynamics is unstable. The name of Poincaré, together with that of
Fermi, is also associated with an important theorem about the nonexistence
of analytic integrals of motion, besides energy, for generic nonlinear Hamil-
tonian systems describing at least three interacting bodies [3, 4]; this is the
origin of the concept of topological accessibility of the whole constant energy
hypersurface of phase space with high degree of freedom systems, with generic
initial conditions.

In the 1940s, a qualitatively new attempt was made to make use of geomet-
ric concepts to relate Newtonian dynamics with statistical mechanics. Krylov
[28] showed in for the first time the existence of a relationship between dy-
namical instability (seen as the exponential amplification of small deviations
in the initial conditions of a collection of colliding objects representing ide-
alized atoms in a gas) and phase space mixing. Phase mixing is a stronger
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property than ergodicity and is far more relevant to physics than ergodicity.
In fact, while ergodicity assures the equality of time and phase space averages
of physical quantities, phase mixing addresses the rate of approach to ensem-
ble averages in a finite time. In modern terms, Krylov realized the necessity
of chaotic dynamics to obtain fast phase mixing for the physically relevant
observables and to make the connection between dynamics and statistical
mechanics stronger. But Krylov also has the great historical merit of having
attempted to bridge the dynamical foundations of statistical mechanics with a
powerful field of mathematics, Riemannian differential geometry. Krylov knew
mathematical results, concerning the properties of geodesic flows on compact
negatively curved manifolds, by Hadamard [29], Hedlund [30] and Hopf [31].
He envisioned their potential interest to physics, once Newtonian dynamics
is rephrased in terms of Riemannian geometric language. Such a possibility
was well known since the beginning of the century, mainly due to the work
of Levi-Civita; in particular that the principle of stationary action entails the
close connection of a classical mechanical flow with a geodesic flow in a con-
figuration space endowed with a suitable metric. Krylov’s efforts concentrated
on the analysis of the properties of physical systems which move in negatively
curved regions in configuration space. For example, he discussed how the pres-
ence of an inflection point in the Lennard-Jones potential could influence the
dynamics of a dilute gas (through the appearance of regions of negative scalar
curvature in configuration space) and its ensuing strong instability. These at-
tempts have been very influential on the development of the so-called abstract
ergodic theory, where Anosov flows [32] (e.g., geodesic flows on compact man-
ifolds with negative curvature) play a prominent role. Ergodicity and mixing
of these flows have been thoroughly investigated. To give an example, Sinai
proved ergodicity and mixing for two hard spheres by just showing that such
a system is similar enough to a geodesic flow on a negatively curved compact
manifold [33]. Krylov’s intuitions have been worked out further by several
physicists amongst whom we cite those of [34, 35, 36, 37, 38, 39, 40]. They
discovered, much to their surprise, that geodesic flows associated with phys-
ical Hamiltonians do not live on negatively curved manifolds, despite their
chaoticity. Only a few exceptions are known, in particular two low-dimensional
models [35, 36, 41], where chaos is actually associated with hyperbolicity due
to everywhere negatively curved manifolds. In fact, for certain models the re-
gions of negative curvature of the mechanical manifolds apparently shrink by
increasing the number N of degrees of freedom, thus reducing the frequency
of the visits of negatively curved regions.

This somewhat biased search for negative curvature has been the main
obstacle to an effective use of the geometric framework originated by Krylov
to explain the source of chaos in Hamiltonian systems. On the other hand, it is
true that the Jacobi equation, which describes the stability of a geodesic flow,
is in practice only tractable on negatively curved manifolds. Formidable math-
ematical difficulties are encountered in treating the (in)stability of geodesic
flows on manifolds of nonconstant and not everywhere negative curvature.
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Moreover, for this kind of problem, intuition can hardly help. However, the
advent of computers has been of invaluable help. As a matter of fact, dur-
ing the last few years an interplay between analytic methods and numerical
simulation has made it possible to overcome the difficulties, showing that the
Riemannian geometric approach can be applied to dynamical systems of inter-
est to statistical mechanics, field theory, and condensed matter physics [42].
This has extended the domain of application of geometric techniques, and has
also introduced a new point of view about the origin of chaos in Hamiltonian
systems, as well as new methods to describe and understand it, “new” in a
sense that will be made clear in Sect. 2.4.7.

A more detailed exposition of the geometric method and its application to
calculating Lyapunov exponents, which we will be summarizing in Sects. 2.4.7
and 2.8.2, can be found in [42]. See also mathematical expositions in [27, 28].

2.1.4 Development of Soliton Theory

It is somewhat ironical that the most celebrated result that came out of the
investigation of the FPU chain did little to resolve Fermi’s original question
of whether or not the nonlinearity would lead to equipartition among the
degrees of freedom. In an attempt to understand the apparent stability of
the recurrences Norman Zabusky and Martin Kruskal [43, 44] found a Taylor
expansion of the discreteness, valid for long wavelength modes, that recovered
partial differential equations, different from the original nonlinear spring which
produced the discretized chain of oscillators. The resulting equations are the
Korteveg–de Vries (KdV) equation for the FPU-α chain and the modified
Korteveg–de Vries (mKdV) equation for the FPU-β chain [43, 44]. The latter
chain, with appropriate normalizations, gave the standard form

uτ + 12u2uξ + uξξξ = 0 (2.6)

where τ = h3t/24, ξ = x − ht, h = L/N , L with the length of the string and
N the number of oscillators. Nonlinear equations of this and related types
had been known to have stable traveling solutions, where the dispersion and
nonlinearity balance to produce constant amplitude and propagation velocity.
An arbitrary initial condition, such as the lowest linear mode on the FPU-β
chain, breaks up initially into a set of structures each having a steady travel-
ing solution with its own velocity. Remarkably, these structures are sufficiently
stable that they pass through one another without breaking up, and the ob-
served recurrences can be interpreted in terms of their superpositions. But
these results do not improve on the best perturbation calculations, and are
clearly limited to long-wavelength (low-frequency) modes by the approxima-
tions which led to (2.6). Partial differential equations, like (2.6), have an infi-
nite number of freedoms, such that general integrability from arbitrary initial
conditions requires an infinite number of invariants of the motion. The real
excitement came when it was shown that such an infinite set exists for (2.6),
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and the new field of soliton theory and applications was born, which would
take us far from the subject at hand. A final note, which is important to our
overall understanding, is that a single initial nonlinear mode solution of the
mKdV equation was found to become unstable as the energy is increased. A
linearization around the nonlinear structure predicted the unstable wave num-
bers and growth rates, and showed that the values correspond to the observed
mode growth for the same discretized structure on the FPU-β oscillator chain
[45, 46]. The result in which one soliton decomposes into a finite number is
not inconsistent with general soliton theory. The instability will give us insight
into some later results.

2.1.5 Resonance Overlap Explanations

Using the concept of mode overlap to estimate the transition between regular
and chaotic motion Felix Izrailev and Boris Chirikov obtained estimates for
mode overlap both for low- and high-frequency modes [47]. Although there are
various approximations required to obtain results, a simple numerical estimate
can be made by equating the nonlinear frequency shift Δωk to the mode
spacing δωk, i.e. setting Δωk/δωk ≈ 1. The mode overlap estimate from this
approximation, in terms of energy density, is

εk =
Ek
N

=
{

4/(3βk) , k � N
2k2(N − k)/(3βN2) , (N − k)� N .

(2.7)

The result for long-wavelength modes, k � N , is not a necessary condition,
as seen in many subsequent numerical experiments, but approximates another
transition, discussed below, between weak and strong stochasticity (the SST).
The result for short-wavelength modes, (N−k)� N , is neither necessary nor
sufficient. It predicts easy overlap at short wavelengths due to mode crowding,
while numerical simulations show consistently that, from a practical point of
view, equipartition is more readily obtained from long-wavelength than from
short-wavelength initial conditions. General theoretical arguments as to the
accessibility of modes has been advanced to show that this is the case [48, 49].

We discuss a resonance overlap criterion, as presently used, in Sect. 2.4.1.
The concept, initially proposed by Chirikov for two degrees of freedom and
reviewed by him, including higher dimensionality, [13], can also be found in
[15], Chap. 4.

2.1.6 Numerical Methods

The straightforward method of computing Lyapunov exponents, using (2.5),
particularly the largest exponent, was a powerful numerical tool for statisti-
cally investigating the dynamical properties of oscillator chains. Another very
useful statistical quantity is the information entropy
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S = −
∑

k

ek ln ek (2.8)

with ek = Ek/
∑
k Ek, such that S = 0 if all the energy resides in a single

mode, and has a maximum S = lnN if the energy is uniformly distributed
among all modes. By using (2.5) and (2.8), detailed numerical investigations
were carried out among investigators in Florence [50, 51, 52, 53], starting
from long-wavelength modes of the FPU-β system, obtaining the variation
of λ and S with energy density ε = E/N . They found a distinct break in
the behavior between weak stochasticity at lower values of ε, having strong
power-law dependencies of λ and S on ε, and strong stochasticity at higher ε
with weak ε dependence. The transition (SST) is qualitatively related to the
mode overlap criterion (2.7). Note that ε is not necessarily a small quantity.

2.1.7 Methods of Analysis and Numerical Results

It is clear from the phase space description of high-dimensional systems that
mode overlap is not necessary to obtain positive Lyapunov exponents. Most
generic initial conditions will lie in stochastic layers, exhibiting λ > 0. The
question becomes what determines the rate of energy diffusion between the de-
grees of freedom? One approach to this problem is to isolate a few of the most
closely coupled modes and determine if their resonant interaction results in
chaos that can then couple to other resonances. This was done, as described
previously, for low-dimensional chaos to understand the exponentially slow
Arnold diffusion. For high-dimensional systems the situation is more com-
plicated with rapid diffusion across overlapped resonances and slow Arnold
diffusion along resonance (see [15], Chap. 6, for a detailed discussion). The
method of isolating a few interacting resonances and then calculating their
coupling to the larger phase space was used for another oscillator chain, a
discretized sine-Gordon equation, to explore the transition from power-law
(numerically observable) equipartition rates with varying ε, to exponentially
slow (not numerically observable) rates [54]. It was also found, using this
approach and comparison with numerics, that short-wavelength mode inter-
actions required considerably higher energy to produce chaos. The method
was then applied to the FPU-β chain, in more detail, specifically investigat-
ing the process by which stochastic interaction between a few long-wavelength
modes was transferred to short-wavelength modes and calculating a transition
between exponentially slow and power-law scaling of the energy transfer [55].
At about the same time, there was considerable attention given to determin-
ing the scaling of the equipartition time Teq with ε, in the power-law regime,
finding Teq ∝ ε−3 [56, 57, 58] with the latter references giving a heuristic cal-
culation of this scaling. The numerics and method of estimation will be given
in Sects. 2.5 and 2.8, respectively. Other authors have fitted the data to a
“stretched exponential”, Teq ∝ exp(−ε1/4) [59], obtaining a better agreement
over a wider ε range, but without any theoretical underpinning. Indeed, the
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reason for this scaling has not been explicitly explained, nor has its relation
to the power-law scaling. It is very likely that, as ε is decreased, longer and
longer time-scales come into play and, therefore, no definite functional form
will be able to fit the increase of the time-scale over the full small ε range.
The scaling λ ∝ ε2, detected at ε smaller than the threshold value of the SST
transition (ε ≈ 1), has also not been specifically related to the Teq ∝ ε−3

scaling in the same ε range. The scaling at higher ε, that is at ε larger than
the threshold value of the SST transition, has been heuristically determined
using a random matrix approximation for the tangent dynamics, intuitively
suggesting that above the SST chaos is fully developed [53]. The scalings of
λ with ε can now be determined, analytically, by considering the geometry of
the phase space near equipartition. Making suitable assumptions about the
geometry of mechanical manifolds, the scaling of λ with ε, both below and
above the SST transition and the value of ε at the transition has been theoret-
ically calculated in agreement with numerical findings [42, 60, 61]. Although
the method was developed to understand the FPU-β scaling, it is applicable
to oscillator chains with various force laws, as can be found in the referenced
works. The mathematical procedure is outlined in Sects. 2.4.7 and 2.8.2.

2.1.8 Comparison of Different Oscillator Chains

Although the FPU-β oscillator chain has received most of the attention, there
has been, from the beginning, interest in other force laws. The cubic potential
in the FPU-αmodel is more conducive to using expansion procedures to obtain
analytic estimates [62], and also, the form with periodic boundary conditions
and appropriately chosen α is a third order truncation of the Toda lattice po-
tential, which is integrable. However, the FPU-α is not energy renormalizable
with varying α (does not scale with αE), and furthermore suffers from the
problem of unbounded trajectories at high energy. Nevertheless, comparison
with the FPU-β dynamics has added considerably to our overall understand-
ing. If the finite time version of the Lyapunov exponent (2.5) is calculated for
the N -particle Toda lattice and its FPU-α approximation, the two exponents
decrease, without separation, until some “induction time” or “trapping time”
τT(ε), is reached, after which λFPU−α attains a constant value, while λToda

continues to decay, as it must for an integrable system [61]. Plotting τT(ε),
with N as a parameter, in the weak stochasticity regime, it was found in [61]
that τT ∝ ε−2, which is different from the Teq ∝ ε−3 scaling found both for the
FPU-α and the FPU-β systems, i.e. the trapping time and the equipartition
time scale differently with ε. A transition at some small ε to a rapid increase
in τT with decreasing ε, with the transition value a function of N , was also
observed and interpreted as a transition to regular motion. This phenomenon
had been observed earlier in the discretized sine-Gordon system and inter-
preted in a similar fashion [54]. However, subsequent work with the FPU-β
system elicited a different interpretation, that the transition was to the ex-
ponentially slow form of Arnold diffusion [55]. These different interpretations
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have not been theoretically reconciled. The Hamiltonian containing both cubic
and quartic nonlinearities, as in (2.1), has also been investigated [63].

The contrast of the FPU oscillator chain with other types of chains has also
led to considerable insight and some additional puzzles. The class of Klein–
Gordon chains, with on-site potentials, are similar to the FPU, but more
complicated, both because they lack the FPU translational invariance and
because they have an additional parameter whose scaling must be determined.
In addition to the sine-Gordon version, a closer comparison with the FPU-β
chain employs a Klein–Gordon on-site potential having quadratic and quartic
terms, with Hamiltonian

H =
N∑

i=1

p2
i

2
+

(qi+1 − qi)2
2

+
mq2i
2

+
βq4i
4

, (2.9)

which is often called the φ4 model to distinguish the quartic nonlinearity
from other Klein–Gordon potentials. In the first comprehensive numerical
comparison of the two systems, (2.1) and (2.9), some physical differences were
observed and, qualitatively, understood. In particular, at a given ε, the φ4 took
significantly shorter time to obtain equipartition from long-wavelength mode
initial conditions and significantly longer time from short-wavelength modes,
than the FPU [64]. The fact that from short wavelengths it was generally a
longer process to obtain equipartition was remarked in that early work, but
little background theory had been done for these initial conditions. A later
comparison for the long wavelengths provided a more complete numerical
study and was able to explain quantitatively these differences [65]. We will
present the numerical comparisons in Sect. 2.5 and outline the supporting
theory in Sect. 2.8. The understanding of the results from short wavelengths
awaited the development of new theoretical concepts, as given below. Before
considering this subject we note that the emphasis on energy density, holding
ε constant as N is varied, i.e. E ∝ N , is not always the relevant way to look at
a problem, as seen in calculating resonance overlap [55]. The case in which E
is held fixed as N is varied has been used to analytically calculate stochasticity
thresholds of the FPU and φ4 models [66].

2.1.9 Dynamics at Short Wavelengths: Chaotic Breathers

Following the original numerical work, most numerical studies examined the
evolution from long-wavelength (low-frequency) modes in which neighboring
oscillators are nearly in phase. Zabusky and Deem [67] were the first to con-
sider the case in which the energy is put into a high-frequency mode. In their
early work, the zone–boundary mode was excited with an added spatial modu-
lation for the FPU-α model. Our main concern here will be the FPU-β model,
and spatial modulation of the mode is spontaneously created by modulational
instability. Budinsky and Bountis [68] found that the zone–boundary π-mode,
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i.e. the mode with 180◦ phase shift between neighboring oscillators of the one-
dimensional FPU lattice is unstable above a given energy threshold Ec which
scales like 1/N . This result was later confirmed by Flach [69] and Poggi and
Ruffo [70], who also obtained the exact numerical factor relating Ec to 1/N .
These results were obtained using a direct linear stability analysis around the
periodic orbit corresponding to the π-mode. Similar methods have been more
recently applied to other modes and other FPU potentials by Chechin [71, 72]
and Rink [73]. A technique which allows for a more general exploration of the
dynamics starting from short wavelengths is to follow an envelope function of
the oscillators defined by ψi = (−1)iqi. Since the main phase variation of the
oscillator amplitudes qi vary by nearly π from one oscillator to the next, the ψi
vary slowly; a Taylor expansion of the envelope function in the oscillator space
can produce a differential equation whose equilibrium properties, stability, and
nonlinear effects can be explored (see Sect. 2.4.5). A formula for Ec, valid for
all N , has been obtained in Refs. [74, 75, 76, 77] in the rotating wave ap-
proximation (RWA) given in (2.86). Besides calculating the energy threshold,
the growth rates of mode amplitudes were obtained. The application to the
Klein-Gordon lattices was first studied by Kivshar and Peyrard [78], following
an analogy with the Benjamin–Feir instability in fluid mechanics [79]. A dif-
ferent approach to describe this instability had been previously introduced by
Zakharov and Shabat [80], who studied the associated nonlinear Schrödinger
equation in the continuum limit. Using that method for the FPU equations of
motion, the instability boundary was found by Berman and Kolovskii [81] in
the so-called “narrow-packet” approximation. Detailed numerics over longer
times were obtained for the FPU model by Pettini [64] and for the discretized
sine-Gordon equation by Goedde [54], both indicating that, for a given en-
ergy, short-wavelength (high-frequency) modes required longer times to reach
equipartition than long-wavelength modes. At about the same time it was
demonstrated that stable intrinsic localized modes (ILMs) could exist for an-
harmonic periodic structures [82]. However, from more general high-frequency
initial conditions there was a tendency to form ILMs but they were not stable,
breaking up and ultimately decaying toward equipartition [75, 83].

The existence of ILMs (also called breathers) on periodic chains and the
complex behavior of more arbitrary high-frequency initial conditions has led
to extensive study of these structures to understand their stability. A com-
prehensive review of these studies would lead us far from the main topic of
this review (see [84] for a review and further references). The breathers can
be stationary or moving, and, like low-frequency solitons, can pass through
one another. Whether energy is exchanged in such an interaction depends on
the system’s stability properties. ILMs that are not exact solutions of the un-
derlying system generally exchange energy, and in a particular process have
been shown to transfer energy from the smaller to the larger breather [85].
This phenomenon is also observed numerically for a Klein–Gordon chain [86]
and for the FPU-β chain [87, 88]. For fixed end-points, as in the original FPU
studies and much subsequent work, a clearly defined instability boundary
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cannot be calculated for a discrete chain. Nevertheless, as described below,
some approximate results are available.

The four-mode resonance overlap criterion for a stochasticity transition,
described in Sect. 2.4.1 for low-frequency modes, has also been used for high-
frequency modes for the discretized sine-Gordon chain [54]. It predicted the
increased stability for these modes, as found numerically. Another approach to
a reduced problem is to represent the main-energy containing oscillator and
the immediate neighboring oscillators as a three degree of freedom system
from which a mapping can be obtained [89]. In this reduced phase space, de-
pending on the energy and the action, one observes both regular and chaotic
regions. The chaotic regions are sufficient to indicate chaos in the larger sys-
tem, but do not give a time-scale for equipartition to be approached. The
regular regions may also be chaotic in the larger system, but are generally
more weakly so. Note that the mapping presentation uses initial conditions
close to those of a breather, which is narrow in oscillator space, and there-
fore has a broad distribution of energies in mode space. Contrarily, the mode
presentation starts with a narrow distribution in mode space and therefore
a broad distribution in oscillator space. The technique employing the enve-
lope equations and the RWA has been used to describe longer time effects,
as well as instability boundaries both for periodic boundary conditions at low
energies [90, 91] and fixed boundary conditions at both low and high energies
[92, 93, 94], and used to compare the dynamics of the FPU and φ4 chains [94].

The general picture that has emerged is that if the energy is placed in
a high-frequency mode or modes for which neighboring oscillators are pri-
marily out of phase, a complicated dynamics ensues, which consists of three
stages. First, there is an initial stage in which, for sufficiently high energy,
the mode breaks up into a number of breather-like structures. Second, on a
slower time-scale, these structures coalesce into one large unstable structure,
called a “chaotic breather” (CB). Since a single large CB closely approximates
a stable breather, a third and final decay stage, toward equipartition, can be
very slow. One does not know whether there exists any true energy threshold
to achieve equipartition, although there appears to be some numerical evi-
dence for such a threshold in the discretized sine-Gordon system. However, as
discussed extensively with respect to low-frequency mode initial conditions,
the practical thresholds refer to observable timescales.

For nonlinear structures on chains having “weak spring” potentials, for
which the nonlinear restoring force substracts from the linear restoring, the
interaction that causes the final decay is radiation from the breathers to the
propagating linear modes. For “strong spring” potentials the breather fre-
quency is above the optical band, so a more subtle energy interchange must
occur [84, 87, 95, 96]. A beat phenomenon has been postulated as the energy
interchange mechanism, and used to calculate an ε-scaling that agrees with
numerics [92].
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2.1.10 Heat Transport in Lattice Models

A main goal of classical kinetic theory is to provide the definition of trans-
port coefficients through phenomenological constitutive equations. The ba-
sic hypotheses of this macroscopic theory of transport phenomena are the
assumption that fluxes are proportional to thermodynamic forces and that
the system evolves close to equilibrium [97]. For instance, when dealing with
heat transport in a solid, one defines the thermal conductivity κ through the
Fourier law

J = −κ∇T , (2.10)

where the heat flux J is the amount of heat transported through the unit sur-
face in unit time and T (x, t) is the local temperature. Such a phenomenological
relation was first proposed in 1808 by Fourier as an attempt to explain the
phenomenon of the Earth cooling. Equation (2.10) is assumed to be valid close
to equilibrium. Actually, the very definition of the local energy flux J(x, t) and
temperature field T (x, t) relies, in turn, on the local equilibrium hypothesis,
i.e. on the possibility of defining a local temperature for a macroscopically
small but microscopically large volume in position x at time t.

The first and most elementary attempt to give a microscopic foundation to
Fourier’s law dates back to Debye [98]. By rephrasing the results of the kinetic
theory for the (dilute) phonon gas, he found that the thermal conductivity
should be proportional to Cv
, where C is the heat capacity and v, 
 are
the phonon mean velocity and free path, respectively. Moreover, Debye also
realized that at a microscopic level the finite thermal conductivity in crystals
should be a consequence of the nonlinear forces acting among the constituent
atoms [98].

Peierls further extended the conjecture of Debye and formulated a
Boltzmann-like equation, which shows that anharmonicity is necessary for
obtaining genuine diffusion of the energy by the so-called Umklapp processes,
where the nonlinearity is introduced phenomenologically in the transport
equation, independently of the microscopic nature of the interactions [99].
Nonetheless, the Boltzmann–Peierls approach represented an improvement
in the theory of lattice thermal conductivity. It allows one to compute the
dependence of κ on the temperature which agrees reasonably well with exper-
imental data in the very low-temperature regime. However, basic questions
remained, such as under which conditions is local equilibrium obtained in a
physically accessible time? This kind of a problem partly inspired the nu-
merical experiment by Fermi, Pasta and Ulam, as Fermi was aware of the
conceptual difficulties concerning the possibility of constructing a satisfactory
microscopic approach to transport theory. In nonlinear chains, the complex
interactions among the constituent atoms or molecules of a real solid are re-
duced to harmonic and nonlinear springs, acting between nearest-neighbor
equal-mass particles. Despite such simplifications, the basic ingredients that
one reasonably conjectures to be responsible for the main physical effect (i.e.
the finiteness of thermal conductivity) are contained in the model. As already
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described, the original study expected to verify a common belief, which had
never been put to a rigorous test: an isolated mechanical system with many de-
grees of freedom should eventually yield equilibrium through “thermalization”
of the energy. Furthermore, the measurement of the time interval needed to
approach the equilibrium state, i.e. the “relaxation time” of the chain of oscil-
lators, would have provided an indirect determination of thermal conductivity
κ, since Debye’s argument predicts κ ∝ Cv/τr, i.e. inversely proportional to
the relaxation time τr ∼ 
/v, which is assumed to represent the average time
needed for a phononic excitation to relax to thermal equilibrium.

After the lack of success of the FPU numerical experiment, the first im-
portant attempt to reconsider the problem of heat transport in solids from a
theoretical point of view was to consider a homogeneous harmonic chain with
fixed boundary conditions in contact with stochastic Langevin heat baths
[100]. The equations of motion

q̈n = ω2(qn+1 − 2qn + qn−1) + δn1(ξ+ − λq̇1) + δnN (ξ− − λq̇N ), (2.11)

where ξ± are independent stochastic processes with zero mean and variance
2λ±kBTα, with T+ > T−, can be solved by a phase-space description, i.e.
using the Fokker–Planck equation. However, the solutions were not success-
ful in reproducing the Fourier law. They predicted that the heat flux was
proportional to the temperature difference, rather than the temperature gra-
dient, thus showing that homogeneous harmonic chains do not exhibit normal
transport properties. Although there are many aspects of linear chains, such as
the inclusion of disorder or varying masses [101] that we have not considered
above, our main concern here is with nonlinear chains. Numerical studies of
heat conductivity in the FPU chain were reconsidered at the end of the 1960s.
In particular, nonequilibrium simulations of the FPU model (2.1) with cou-
pling constants α and β fixed to represent the leading terms of the expansion
of the Lennard-Jones potential were performed [102, 103]. These authors also
considered the effect of disorder by including in the model either a disordered
binary mixture of masses [102] or random nonlinear coupling constants [103].
The combination of nonlinearity and disorder did not help the researchers to
obtain a clear understanding of the problem. They even found cases in which
anharmonicity increases thermal conductivity. The attention was mainly fo-
cused on the form of the temperaure profile T (x). They noticed that its shape
depended on the existence of disorder. Although it is known that T (x) is not a
self-averaging observable for disordered harmonic chains, it is not known how
T (x) depends on disorder over long enough time-scales in anharmonic chains.
Additional questions that were investigated concerned the concentration of
impurities [102].

Preliminary work on homogeneous anharmonic chains considered the
equal-masses FPU and Lennard-Jones chains composed of 30 particles and
coupled with Langevin baths at their boundaries [104], a task that was unfea-
sible with the computer resources available at that time. As a consequence,
several attempts of designing easy-to-simulate toy models followed these first
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studies. Some examples are reviewed in [105]. One was the so-called ding-a-
ling model, a prototype of all models with an on-site potential, as described
in (2.16) in the next Section. This model was found to exhibit normal ther-
mal conductivity. The increase in computer power led to a revival of the
heat conduction problem inbetween the mid-1980s and the mid-1990s, when
nonequilibrium simulations of the FPU model [106, 107] and of the diatomic
Toda chain [108, 109, 110, 111] of alternating light and heavy masses were per-
formed. Subsenquently, there were systematic studies on the size dependence
of the heat conductivity for the FPU chain with quartic [112, 113, 114] or cubic
[115] nonlinear potential as well as for the diatomic Toda chain [116, 117].
They indicated a divergence of the heat conductivity with N , the number
of mass points, which was interpreted as due to ballistic transport of energy
through the chain. As we will comment in the following, an on-site potential
determines a classical conductivity.

2.2 Formulations: Types of Oscillator Chains

2.2.1 Chains Similar to the FPU

Over the years, since the first numerical investigation by Fermi, Pasta and
Ulam, many different oscillator chains have been studied. There have been var-
ious reasons for the particular choices, sometimes because they approximated
physical systems, sometimes for their simplicity, and sometimes designed to
bring out specific features or compare results with other chains.

In choosing an oscillation chain for the initial study, the FPU-β system was
a reasonable choice, as it is a discretization of the partial differential equation
for the nonlinear string with a strong nonlinear restoring force

∂2y

∂t2
− ∂2y

∂x2

[
1 + 3β

(
∂y

∂x

)2
]

= 0. (2.12)

The discretization of y(x, t) as yj(t),

∂y

∂x
=
yj+1 − yj

Δx
or

yj − yj−1

Δx
, (2.13)

∂2y

∂x2
=
yj+1 − 2yj + yj−1

Δx2
, (2.14)

where Δx = L/N , with L as the length of the string and N − 1 the number
of oscillators, yields

ÿj =
(yj+1 − 2yj + yj−1)

Δx2

×
{

(1 + β)
[
(yj+1 − yj)2

Δx2
+

(yj − yj−1)2

Δx2
+

(yj+1 − yj)(yj − yj−1)
Δx2

]}

(2.15)
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The original work, and also the analytic investigation by Izrailev and Chirikov
[47], were with fixed end points at j = 0 corresponding to x = 0, and j = N
corresponding to x = L, such that j = 1, 2 . . . , N−1 for the moving oscillators.
The coordinates can be rescaled at fixed N to any Δx and L to give the
FPU-β part of (2.1), with Δx normalized to 1. Letting Δx → Δx′ = L′/L
and introducing the change of variables y′j → yjL

′/L and t′ → tL′/L leads
to (2.15) again. Since dy′j/dt

′ = dyj/dt, the energy per mode is unchanged.
Thus increasing N by adding oscillators to the end of the chain at fixed Δx is
equivalent to adding oscillators by subdividing the chain at fixed L, provided
the time and displacement are rescaled.

The addition of the α term to (2.1) is a logical extension to a more general
restoring force. However the α and β terms have different properties, with the
energy scaling differently with choices of α and β, such that the energy E is
renormalizable with βE and with α2E. Furthermore, the sign in the nonlinear
term in (2.12) changes the behavior from a strong to a weak spring, while the
α term has a directional antisymmetry. Some of the consequences of these
differences will emerge in the following sections.

It also became clear in subsequent years that, while fixed endpoints were
a physical condition for an actual string, periodically continued endpoints (or
mass points on a circle) had some attractive features for analysis. With a pe-
riodic boundary condition (BC), waves traveling in a single direction without
reflection are allowed, which is a key ingredient in the development of soliton
theory, as we outline in Sect. 2.4.3. For a periodic BC, linear momentum is an
exact invariant, which simplifies various analyses. If the oscillator dynamics is
expressed in terms of linear modes, i.e. the modes which would be exact so-
lutions in the absence of the nonlinearity, other differences between fixed and
periodic boundaries become evident. For a periodic BC there is a highest fre-
quency boundary mode that has exact alternation of oscillator phases, which
is an exact solution of the nonlinear problem, as considered in subsequent
sections.

The FPU type of oscillator chains did not realistically represent the dy-
namics of solid materials. A more general representation is given by the Hamil-
tonian

H =
∑

i

[
p2
i

2m
+ U(qi) + V (qi+1 − qi)

]
(2.16)

where U and V are on-site and inter-site potentials, respectively, which are
most generally nonlinear. They can be constructed as physical models of one-
dimensional crystals or by discretizations of Klein–Gordon partial differential
equations. For the FPU chain U = 0. One form of (2.16) that is used to
compare to FPU-β dynamics is the φ4 chain with V = (1/2)(qi+1 − qi)2 and
U = (m2/2)q2i + (β/4)q4i , as given in (2.9), and compared theoretically and
numerically with the FPU in various subsequent sections. The Hamiltonian
of (2.16) and the simplified form (2.9) are not rescalable as is the FPU-β, but
the coefficients can be chosen to make useful comparisons.
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An interesting special case of the Klein–Gordon class of partial differential
equations is the sine-Gordon equation

yt − yxx + sin y = 0, (2.17)

which can discretized in space in the same manner as the nonlinear spring to
obtain the system Hamiltonian

H =
N∑

i=1

1
2
p2
i +

N∑

i=1

(1− cos yi) +
N∑

i,j=1

Aijyiyj , (2.18)

where the coupling matrix Aij is given by

Aij =
(2δij − δi,j−1 − δi,j+1)

(Δx)2
, (2.19)

pi = ẏ, Δx = L/N , and δij is the Kronecker δ. As with the more general
forms of the discretized Klein–Gordon, (2.18) is not rescalable on Δx, such
that both L and N enter as essential parameters. The discretized system is of
particular interest, as the partial differential equation is integrable, unlike the
nonlinear spring, so the discretization, itself, becomes the only source of chaos.
However, at low frequencies (long wavelengths) where the FPU approximates
an integrable system, the transitions are similar [54]. One interesting feature in
that work was an explicit discretization of time, so forming a 2N -dimensional
symplectic map to be analyzed. The sine-Gordon on-site potential has also
been used as an interaction potential to study the Fourier heat law, as we
discuss in Sect. 2.7.2. For that case the potential is known as the Frenkel–
Kontorova potential.

Closely related to the FPU chain is the chain with the same interparti-
cle potential structure but with varying masses. To explore the question of
whether a fraction of the modes, in a distinguishable mode packet, could be
isolated from the modes initially containing the energy, Galgani et al. [118]
considered a modified FPU-β model, with fixed ends, described by the Hamil-
tonian

H =
N∑

i

[
p2
i

2mi
+

(qi+1 − qi)2
2

+ β
(qi+1 − qi)4

4

]
(2.20)

with mi = 1 for i odd and mi = m < 1 for i even. The alternation of
masses separated the linear mode spectrum into branches, an acoustic branch
which is only slightly modified from the usual spectrum, and an optical branch
associated with the lower mass particles. The form of the spectrum is given
in Sect. 2.2.2 and the implication for mode isolation in the thermodynamic
limit is discussed in Sect. 2.4.2

Another oscillator chain of particular importance is the Toda lattice, which
generalizes the three-particle lattice, given in (2.4), to N particles. The lat-
tice, with exponential forces between particles, is generally thought of as con-
strained on a ring, which is equivalent to periodic BC. This discretized chain
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is exactly integrable, which makes it uninteresting in itself, but very useful
for comparing to the FPU-α potential that can be considered to be a trun-
cation of the Toda potential (see Sect. 2.4.3). The same comparison of the
three particle Toda potential with its truncation, the Henon and Heiles po-
tential [11], was very useful in understanding low-dimentional chaos, as we
have already discussed briefly in Sect. 2.1.2. The N -particle Toda chain has
also been used to explore the effect of alternating heavy and light masses,
which is not integrable, and is discussed briefly in Sect. 2.7.1 in connection
with heat conduction.

The oscillator chains described above do not exhaust the useful types that
have been explored in a variety of contexts. One such chain of historical impor-
tance is the “ding-a-ling” model consisting of alternately harmonically bound
and free hard-core particles, which was used to obtain the Fourier law of heat
conduction [119]. It is given in (2.132), Sect. 2.7.2, and its properties are dis-
cussed there. Variants of the ding-a-ling model have also been studied in this
context [120]. The less artificial potentials of the Klein–Gordon type also can
produce the Fourier law, and are considered in Sect. 2.7.2.

2.2.2 Representation in Modes of the Linear System

We have already mentioned that, for linear chains, the transformation to the
harmonic normal modes, as given by (2.2), gives a set of mode amplitudes
Qk that are invariant under the motion. This can be seen by applying the
inverse transform, with N moving particles, to the FPU-β chain (2.1) or the
φ4 chain (2.9)

qi =

√
2

N + 1

N∑

k=1

Qk sin
(

ikπ
N + 1

)
, (2.21)

to obtain [121]

Hβ =
N∑

k=1

1
2
(
P 2
k + ω2

kQ
2
k

)
+

β

8N + 8

N∑

i,j,k,l=1

C(i, j, k, l)QiQjQkQl, (2.22)

where Pk are the corresponding momenta, with the mode frequencies ωk
given by

ωk = 2 sin
(

πk

2N + 2

)
(2.23)

for the FPU-β, and

ωk =

√

m2 + 4 sin2

(
πk

2N + 2

)
(2.24)

for the φ4. It is immediately apparent from Hamilton’s equations that the
dynamics of the linear modes are independent of one another. The quartic
terms couple the modes together, with
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C(i, j, k, l) = ωiωjωkωl
∑

P

B(i+ j + k + l) (2.25)

for the FPU-β, and, for the φ4,

C(i, j, k, l) =
∑

P

B(i+ j + k + l) . (2.26)

The sum is over the eight permutations of the sign of i,j,k,l and the function
B(x) takes the value 1 if the argument is zero,−1 if the argument is ±2(N+1),
and zero otherwise. The selection rule for the couplings, which simplifies the
analysis, follows from the quartic nature of the coupling (e.g., see [122]).

From (2.23) we see that frequencies spacings follow a simple sine function:
they are linearly spaced (i.e. proportional to k/N) for k � N and accumulate
quadratically (i.e. as (πk/2(N + 1))2) near the highest frequency, which lies
just below 2. For periodic boundary conditions, the frequencies are

ωk = 2 sin(πk/N), (2.27)

which has only N/2 different linear frequencies, and an exact zone-boundary
mode with ωN/2 = 2. The existence of this mode with exact alternation of
the phase of neighboring oscillators allows one to obtain some exact solutions,
which we consider in Sect. 2.4.4. For the φ4 chain, the linear part of the on-site
potential results in the m2 term in (2.24). If m2 � πk/N , then there is also
quadratic accumulation of frequencies above ωk = m. This bunching plays a
significant role in the chaotic numerics, as described in Sect. (2.5). The FPU-α
Hamiltonian can also be transformed by using the harmonic normal modes to
obtain the transformed Hamiltonian

Hα =
N∑

k=1

1
2
(
P 2
k + ω2

kQ
2
k

)
+

α

2
√
N + 1

N∑

k,j,l=1

C(k, j, l)QjQkQl, (2.28)

which is simpler, having only a product of three summations to represent the
cubic term. Furthermore, it is considerably more stable than the FPU-β as
it is a truncation to cubic order of an N -particle Toda lattice, as we have
considered in the previous subsection.

For numerical integrations if, for example, a single mode initial condition
is used, usually with all the energy in the form of potential energy, then
E = (1/2)ω2

kQ
2
k (ε = ω2

kQ
2
k/(2N)), and the oscillator equations are integrated

with their initial values given from (2.21). Due to the nonlinearity, the energy
does not remain in the initial mode but spreads through the mode spectrum,
defined in terms of the instantaneous qi by the transformation in (2.2). For
energy sufficiently low that there is no resonance overlap (see Sect. 2.4.1),
the energy is principally confined to the initial mode falling exponentially
to other k-values, but satisfying the selection rule as given by (2.25) and
following. Using perturbation theory, DeLuca et al. [55] obtained the mode
energy decay in geometric progression
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Eh 
 ρ2Eh−2γ , (2.29)

with γ as the initial mode and h the index of any high-frequency mode, and
ρ is the average decay ratio between modes, 2γ apart, given by

ρ =
3βE
4πγ

. (2.30)

The formula only holds for βE � 1, where resonances do not play a significant
role. Numerical results for γ = 3 and 5 agreed quite well with the analytical
predictions of (2.29) and (2.30).

The related problem of the FPU with alternating masses, as given in (2.20),
has linear normal modes with frequencies

ωj =
1 +m±

√
1 +m2 + 2m cos kj
m

(2.31)

where kj = 2jπ/(N + 1) and 1 ≤ j ≤ N/2 (for notational convenience we use
j as the mode number). The acoustic branch has 0 < j < N/2 and the optical
branch for N/2 < j < N . The dispersion, calculated from (2.31), shows an
optical branch that moves to higher frequencies and flattens as m is decreased;
for example, the frequency separation of the minimum optical and maximum
acoustic frequency is Δω =

√
2(
√

(1/m) − 1), while the optical frequency
spread is δωh =

√
2/m(

√
1 +m − 1) ≈

√
m/2, m � 1. The implication for

isolated modes in the thermodynamic limit is discussed in Sect. 2.4.2.
Depending on the nonlinear forces, there are implications for the stability

of nonlinear structures for the various forms of the linear modes. A weak spring
(β < 0) in the FPU puts the nonlinear solution in the acoustic band which
can then radiatively couple to the linear modes, destroying nonlinear stability.
Similarly, for a strong spring (β > 0) but with an optical branch, a nonlinear
acoustic mode can be shifted into the optical branch where it can dissipate
by loosing energy to that branch. The various treatments of these phenomena
are a major area for study (see, e.g., [84]), beyond the subject matter of this
review. However, the phenomena will reappear in various subsequent sections.

2.3 Formulations: Methods of Numerical Analysis

Apart from the exception of integrable cases, most of the models of oscillator
chains introduced in Sect. 2.2 require numerical investigation. The choice of
suitable observables is then crucial to point out features of mathematical and
physical interest. In this section, we introduce the description of indicators
concerning both dynamical and statistical properties. In general, they are
inspired by generalizations or extensions of the thermodynamic concept of
entropy.
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2.3.1 Measurement of Chaos Indicators

A quantitative characterization of the oscillator chains is their degree of
chaoticity. This is measured by the largest Lyapunov exponent, whose pos-
itivity can be a hint to the possible equipartition of the energy among the
degrees of freedom. Let us briefly recall that if

ẋi = X i(x1 . . . x2N ) (2.32)

is a generic dynamical system, the tangent dynamics to this flow is de-
scribed by

dξi

dt
= Jik(x(t))ξk , (2.33)

where Jik = ∂X i/∂xk, and the largest Lyapunov exponent is given by

λ = lim
t→∞

1
t

ln
‖ξ(t)‖
‖ξ(0)‖ (2.34)

for almost all choices of ξ(0), under rather general assumptions. If x =
(q1, . . . , qN , p1, . . . , pN), with X i = (∂H/∂pi) for i = 1, . . . , N and X i =
−(∂H/∂qi) for i = N + 1, . . . , 2N the dynamical system (2.32) represents a
Hamiltonian flow. The corresponding tangent vector is ξ = (ξ1, . . . , ξ2N ) ≡
(ξ1q , . . . , ξNq , ξN+1

p , . . . , ξ2Np ), and, by setting Λ[x(t), ξ(t)] ≡ {ξT J [x(t)] ξ +
ξT JT[x(t)] ξ}/ 2ξTξ = [ξTξ̇ + ξ̇Tξ]/2ξTξ = (d/dt) ln(ξTξ)1/2 ≡ d

dt ln ‖ξ‖, this
can be formally expressed as a time average

λ = lim
t→∞

1
t

∫ t

0

dτ Λ[x(τ), ξ(τ)] . (2.35)

Now we want to specify the more general concept of Kolmogorov–Sinai
entropy [23, 24] associated with the Lyapunov exponents and discuss its rele-
vance. Besides the largest Lyapunov exponent λ, in a dynamical system made
of N degrees of freedom, each one described by a pair of canonical coordinates
(position and momentum) one can define a spectrum of Lyapunov exponents,
λi, where the index i = 1, · · · , 2N labels the exponents from the largest to the
smallest one. An effective algorithmic procedure for evaluating the spectrum
of Lyapunov exponents is discussed in [152]. Beyond rigorous mathematical
definitions, an interpretation of the Lyapunov spectrum can be obtained by
considering that the partial sum hn =

∑n
i=1 λi (n ≤ 2N) measures the av-

erage exponential rates of expansion, or contraction, of a generic volume of
geometric dimension n in phase space. Accordingly, h1 = λ1 ≡ λ is equivalent
to the definition given in (2.34), since a “one-dimensional volume” is a generic
tangent segment in phase space; h2 = λ1 + λ2 gives the divergence rate of a
surface; h2N =

∑2N
i=1 λi is the average divergence rate of the whole phase

space. In Hamiltonian systems, according to Liouville’s theorem, any volume
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in phase space is conserved and h2N = 0. Moreover, for each λi > 0 there ex-
ists λ2N−i+1 = −λi.1 Chaotic evolution implies that a small region in phase
space (for instance, the volume identifying the uncertainity region around an
initial condition) is expanded and contracted with exponential rates along
different directions in phase space. After a time of the order 1/λ the distance
between two infinitesimally close initial conditions will have the size of the
accessible phase space; accordingly, we have no means of predicting where the
image of an initial point is in phase space by knowing the image of an initially
close-by point, even if after a long time these points will eventually come again
close to each other (for a detailed discussion see [123]). A very important con-
ceptual achievement is that the mechanical description of a chaotic evolution
can be replaced by a description in terms of a probability distribution on
phase space which is invariant under time evolution and which allows one to
define a metric entropy h. The mathematical details go beyond the scope of
this manuscript; see [123, 124, 125, 126]. For our purposes, it is important
to mention that Pesin later proved, under rather general assumptions, that
there exist a remarkable relation between Kolmogorov’s metric entropy and
the positive component of the Lyapunov spectrum [127]:

h =
∑

j,s.t.λj>0

λj , (2.36)

where the sum extends over all the positive Lyapunov exponents. This for-
mula can be applied to the study of the dynamics of Hamiltonian systems,
like the FPU chain. In this respect, it is particularly interesting to check this
formula in the thermodynamic limit, in which the number of oscillators tends
to infinity. In general, this limit does not commute with the limit t → ∞
in (2.5), i.e. the measurement of λ and h may depend on the order in which
these limits are performed. Numerical evidence of the existence of a limit
curve for the spectrum of Lyapunov exponents in the thermodynamic limit
for the FPU chain was later obtained ([128]; see also Fig. 2.2 ). Further numer-
ical evidence of the existence of such a limit for a variety of physical systems
have been subsequently obtained. However, a rigorous mathematical proof is
still lacking, although some attempts in this direction exist [129, 130]. The
value of h is expected to depend on some typical parameters, like the energy
density ε for a Hamiltonian chain of oscillators. For instance, the Lyapunov
spectrum of the FPU-β model shown in Fig. 2.2 is obtained for βε = 10,
which is sufficiently large to yield a strongly chaotic dynamics. By decreas-
ing ε sufficiently to enter the almost-recurrent dynamical regime observed by

1 For each conserved quantity like the energy, momentum etc., there is a pair of con-
jugated exponents that are zero. Stated differently, each conservation law amounts
to a geometrical constraint that limits the access of the trajectory to a subman-
ifold of phase space. Integrability has the consequence that all λi are zero, i.e.
there can be as many conservation laws as the number of degrees of freedom; the
converse is in general not true.
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Fig. 2.2. The spectrum of positive Lyapunov exponents of the FPU-β model for
different chain lengths, from 8 up to 64 oscillators

Fermi, Pasta, and Ulam in their original numerical experiment, the shape of
the spectrum also changes significantly. In this weakly chaotic regime, the
maximum Lyapunov exponent is found to decrease and the positive compo-
nent of the Lyapunov spectrum approaches the horizontal axis. Still the only
null exponents are those corresponding to the conserved quantities, although
the others take significantly smaller values and the value of h is drastically
reduced. According to this description, one is led to conclude that, in the
thermodynamic limit, all possible chaotic degrees of freedom should remain
chaotic for arbitrarily small values of ε, despite that beyond a certain value
it will become practically impossible to distinguish them from zero. In this
respect, h cannot provide a characterization of the weakly chaotic regime in
terms of an effective number of active degrees of freedom, as discussed in
the following Section. Nonetheless, the Lyapunov analysis can provide a clear
quantitative characterization of the strong and weak chaotic regimes observed
in the FPU-chain. Actually, the maximum Lyapunov exponent of the FPU-β
model has been analytically estimated [131] on the basis of the geometrical
approach, sketched in Sect. 2.4.7. It has been found that there is a transition
value of the energy density, εc, at which the scaling of λ with ε changes from
a strong ε-scaling, λ(ε) ∝ ε2, to a weaker one λ(ε) ∝ ε1/4. The numerics is
given in Sect. 2.5 and the calculation of the scaling is outlined in Sect. 2.8.
This steep scaling of λ(ε) below εc implies that the typical relaxation time,
i.e. the inverse of λ, may become exceedingly large for very small values of
ε. It is worth stressing that this result seems independent on the size N of
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the system, thus indicating that the different relaxation regimes represent a
statistically relevant effect.

2.3.2 Equipartition Indicators: Information Entropy, Effective
Number of Modes

In the numerical experiment by Fermi, Pasta and Ulam, the initial energy
was placed in a single low-k mode and the authors aimed at studying how
this energy would eventually flow to the other modes. The description of the
dynamics in terms of Fourier modes was a natural approach at least for small
specific energy, despite the fact that they are not the proper modes of the
chain. They expected that the nonlinearity would yield a fast decay towards
equipartition of the energy among the Fourier modes as a natural condition
to be fullfilled at thermodynamic equilibrium. The existence of the two dy-
namical regimes in the FPU problem for low and high values of the energy
density, ε, has been characterized in this context by introducing a suitable
equipartition indicator among the Fourier modes [51, 52]. This indicator is
inspired by information entropy, but, at variance with Kolmogorv’s metric
entropy, it relies upon a heuristic definition. In a chain made of N oscillators
with periodic boundary conditions there are N/2 independent Fourier modes.
A spectral entropy S(t) can be defined as

S(t) = −
N/2∑

n=1

pn(t) ln pn(t) , (2.37)

where pn(t) = En(t)/
∑
nEn(t), En(t) being the harmonic energy of the

Fourier mode with wave vector kn = 2πn/N at time t. When only a sin-
gle Fourier mode is excited S(t) vanishes, and it takes its maximum value
Smax = ln(N/2) when equipartition of the energy among the Fourier modes
is obtained. Numerical studies showed that this quantity exhibits good sta-
tistical properties, while it can describe the approach to energy equipartition
starting from either single-mode or multimode initial excitations. To compare
chains of different lengths, a normalized quantity was defined:

η(t) =
Smax − S(t)
Smax − S(0)

. (2.38)

Notice η(t) tends towards zero when the system approaches equipartition and
that it keeps a value close to 1 when the initial spectral entropy is maintained
during time evolution. In the long time limit η(t) was found numerically to
approach an asymptotic average value η̄, which was used for identifying the
equipartition thresholds of the FPU-α and -β models [51, 52]. Moreover, it
has been also observed that the very dynamics of η(t) provides a qualitative
characterization of the different dynamical regimes observed in these chain
models [132]. The regular, quasi-recurrent dynamics of η or of neff = Neff/N
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(see below) observed for small values of ε turns to a fast decay towards small
η (neff ∼ 1) for large values of ε.

A more physically transparent measure is what we call the effective number
of modes containing energy, which can be defined as

Neff ≡ expS, (2.39)

which is conveniently normalized as

neff = Neff/N . (2.40)

For oscillators, the same definitions (2.37)–(2.40) can be used, with the energy
of each oscillator taken directly from the Hamiltonian, by assigning half of the
difference potential to each neighbor, to obtain the normalized effective num-
ber of oscillators containing energy, nosc, which we will use in the numerics
from short-wavelength mode initial conditions. The instantaneous values of
neff do not asymptote to one, at equipartition, due to fluctuations. A simpli-
fied calculation of the effect of fluctuations introduces a deviation δei from
equipartition ei = ēi + δei. Expanding the logarithmic function in S in (2.37)
as ln(1+δei/ēi) = δei/ēi−(1/2)(δei/ēi)2 and performing the summation over
i yields

neff = nosc =
1
N

exp{−Nē ln ē−N ¯δe2/(2ē)} = exp{−N ¯δe2/(2ē)}. (2.41)

Taking ē = 1/N and making the assumption of normal statistics, that for
each normal mode ¯δe2 = ē2 (this is confirmed by calculations), we see that
N cancels giving an asymptotic value neff = nosc = exp(−0.5) = 0.61, at
equipartition, for both modes and oscillators. More accurate calculations have
been made separately for modes and oscillators, including the nonlinear terms
in the oscillator calculation, yielding at equipartition, ([92] Appendix D),

neff = 0.65 nosc = 0.74. (2.42)

To obtain some smoothing of the numerical values of neff(t) and nosc(t), vari-
ous short-time averages of these quantities have been used, yielding somewhat
different values from those predicted in (2.42).

2.4 Formulations: Analytic, Low-Energy
and Short-Time Results

2.4.1 Transformations and Low-Dimensional Calculations

We have seen in Sect. 2.2 that a transformation to the coordinates of harmonic
normal modes decouples the modes if only linear forces are present. For small
values of βE, the smaller nonlinear terms couple all of the modes together.
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Taking the FPU-β system with energy initially placed in a long-wavelength
mode, which we consider here, the selection rule for the couplings results in a
geometric progression of the energy fall-off to shorter-wavelength modes [55].
The strongest interactions are therefore among neighboring modes, with the
initial energy in a long-wavelength mode interchanging energy most strongly
with its nearest neighbors. The resulting beat oscillations, as observed nu-
merically in the original and much subsequent work (see Fig. 2.1), involved
primarily a few modes. The predominant localization among a few modes al-
lows a useful investigation of a reduced problem, involving some minimum
number of modes. To look at “resonance overlap,” a four-mode subsystem is
examined, which contains two three-mode resonances. This was done for the
sine-Gordon chain by Goedde et al. [54] and then in more detail for the FPU-β
chain by DeLuca et al. [55]. Summarizing the analytic method, a transforma-
tion of the four-mode Hamiltonian to action-angle variables exhibits two slow
angles of the major resonances θs = θ1 + θ3 − 2θ2 and θsp = θ2 + θ4 − 2θ3.
A second transformation is performed to the new variables θs and θsp fol-
lowed by employing the method of averaging over the two remaining fast
angles. The resultant averaged Hamiltonian has two additional approximate
constants of the motion, which are the actions related to the averaged-over
angles and thus is reduced to two freedoms. The resulting Hamiltonian has
the approximate form

H4 =
( π
N

)2

Eγ

[
− (Js + Jsp)/4Jc

+
R

8J2
c

(3J2
s + 3J2

sp − 4JsJsp + JcJs − 2JcJsp)

+
R

16J2
c

√
J1J2J3J4 cos(θsp + θs)

+
R

16J2
c

(
√
J1J2

2J3 cos θs +
√
J2J2

3J4 cos θsp)
]
, (2.43)

where Jc, Jd, Js, and Jsp are the transformed actions and J1, J2, J3, and J4

are the original actions, related to the transformed actions by the canonical
transformation

J1 = Js (2.44)
J2 = Jsp (2.45)
J3 = Js − 2Jsp + Jc (2.46)
J4 = Jsp + Jd . (2.47)

Jc and Jd are new constants of the motion, resulting from the averaging,
and Jc was chosen such that Jc = Eγ/Ωγ , i.e. the action corresponding to
the initial energy, primarily in mode γ. The concept of “resonance overlap” is
taken from low-dimensional chaos theory, which considers separately the phase
space motion H(Js, θs) with Jsp = const. and H(Jsp, θsp) with Js = const.,
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with overlap being the condition that for some values of θs and θsp we obtain
Js = Jsp. The variable actions Js and Jsp are numerically studied by looking
at the phase space of one degree of freedom in a surface of section of the
other freedom, with area filling trajectories indicating resonance overlap. The
overlap is governed by

R = (N + 1)
6β
π2
Eγ ≥ 1 , (2.48)

where R measures the ratio of nonlinear to linear energy in the resonant
degrees of freedom, analogous to the energy ratios used to calculate the mode
overlap condition in (2.7). As in that calculation, from our understanding of
low-dimensional chaos, we expect significant stochasticity to appear for R > 1.
R = 1 has recently been shown to be the transition to instability for periodic
solutions of the full chain [133].

The results for four R-values are given in Fig. 2.3, showing the transition
to stochasticity in the reduced system. From the same four-mode calculation,
the frequency of a typical resonant trajectory is given by

ΩB ≈ μγβEγ

( π
N

)2

(2.49)
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Fig. 2.3. Surfaces of section of the averaged H4 system in formula (2.43) with two
slow angles and six initial conditions per picture, we plot Js vs. θs
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with μ a constant of order unity, dependent on the particular initial conditions.
(Here and afterward, we use the approximation N + 1 ≈ N .)

The transition to stochasticity in a reduced system is neither necessary
to ultimately reach equipartition, nor sufficient to produce equipartition on
numerically observable time-scales. We note from (2.48), as the number of
freedoms increases overlap occurs at decreasing energy. However, from (2.49),
we see that the stochasticity also exhibits itself on increasingly slow time-
scales. Furthermore, there is a competition between local resonance overlap,
which spreads energy among neighboring modes, and the process of Arnold
diffusion, which transports energy along guiding resonances to modes in other
parts of the phase space. This latter process is exponentially slow at low
energy. Although a rigorous upper bound on Arnold diffusion has the form
given in (2.3), this does not determine the diffusion rate from the long wave-
lengths to the short wavelengths. The appropriate calculation is made from
a three-resonance model ([13]; see also [15], Sects. 6.1 and 6.2). We have al-
ready considered the two resonances, which produce the local stochasticity.
The third resonance, called the guiding resonance, links two short-wavelength
modes to the low frequencies via the selection rule (2.25). Again, following
[55], the calculation yields a rate of energy increase in the short-wavelength
mode proportional to exp(−π/ε), with ε ≈ ΩB/δΩh where δΩh is the short-
wavelength resonance frequency. Thus we expect the diffusion to be numeri-
cally observable if ΩB > δΩh, i.e. the low frequency beat becomes comparable
to a high-frequency resonance that it can couple to, that is, one for which
B �= 0 in (2.25). The smallest δΩh (largest ε) is δΩh = γ(π/N)2. Substituting
for ΩB from (2.49), together with this δΩh yields the inequality

μβEγ > 1 (2.50)

for diffusion along resonances to compete with diffusion across resonances.
Here, as in all other equations βE appears as a product, which measures the
nonlinearity. The implications of (2.50) can be seen in numerical calculations
in Fig. 2.4 at small values of R for some relatively small oscillator chains, for
which the lower edge gives a long-time asymptotic value of Neff . Considering
that for R > 1 there is strong local coupling among modes, then as R increases
and the energy interchange spreads to more modes, there is an increase of
Neff ∝ R, given by this lower edge. However, at some value of Eγ = Ec,
satisfying (2.50) the values of Neff leave this asymptote, and, in fact, approach
equipartition over longer times. This scaling, first found numerically in [56],
is physically explained by the direct transfer of energy through the guiding
resonances to high-frequency modes (see [55] for a more detailed calculation).
We illustrate the spreading to higher modes in Fig. 2.5 at R = 2.9 for N =
32, below the Ec transition as found in Fig. 2.4. The increase in energy in
some high-frequency modes, specified from the selection rules, is above the
background, but does not increase with time. We will contrast this result
with the spectrum for E > Ec in Fig. 2.9, which approaches equipartition as
time increases.
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As with the FPU-β oscillator chain, the FPU-α can also be analyzed in
terms of overlapping resonances to determine the onset of large stochastic lay-
ers among the long-wavelength modes. Because the nonlinear term is cubic,
rather than quartic, the resonances are simpler, involving only three terms,
and the scaling, with ε, for resonance overlap, is different. Shepelyansky [62]
has used the same averaging procedure as described in the four-mode approxi-
mation of the FPU-β, to analyze the FPU-α chain, obtaining the Hamiltonian

–0.488 +
++

+
+

+
+

+ + +
+

+
+

+
+ +

+
+

+
+

+ +
++ + + + +

+
+

+
+

–4.882

L
og

 e
i

–9.277

–13.671

–18.066
0 8 16 24 32

Mode

Fig. 2.5. Log of average energies at R = 2.9 for N = 32 (E = 1.4) after t =
2000(N/π)2
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H =
N∑

k=1

ωkIk +
α

2
√
N + 1

·
N∑

k1,k2,k3=1

(ωk1ωk2ωk3Ik1Ik2Ik3)
1/2

× cos(θk3 − θk2 − θk1)δk3,k1+k2 (2.51)

where all the angles have been averaged over, except the resonant ones for
which k3 = k1 + k2 in the long-wavelength spectrum. For these wavenumbers
from (2.23), ωk ≈ πk/(N + 1) such that ω3 ≈ ω1 + ω2. The Is and θs are
the action-angle variables, as in (2.43), before the final transformation to the
resonant coordinates. Because of the lower cubic products, Shepelyansky was
able to examine the full Hamiltonian, and after making two simplifying further
transformations he derived the approximate chaos border at long wavelengths,
γ � N , where γ is the k-value at the center of the resonance

αN3/2E1/2/γ2 > 1. (2.52)

Comparing (2.52) with (2.48), which has R > 1 for resonance overlap, we see
that the scaling with the perturbation strengths α or β are the same, as is
the scaling of ε ∝ N2 if we substitute for the energy density ε = E/N in
both cases. Thus for fixed energy density (fixed temperature), both formulas
predict a resonant transition to local chaos in the thermodynamic limit, N →
∞. The energy-dependence with quartic or cubic nonlinearities is, of course,
different. Shepelyansky investigated the transition of (2.52) numerically, using
the largest Lyapunov exponent, finding reasonable agreement. He also fits the
distribution of linear mode energies to the distribution

Ek ∝
1

kc exp(k/kc − c) + 1
(2.53)

(with the best fit for c = 2.65) such that kc is a measure of the number
of modes containing energy, similar to Neff , but for early times for which
the energy distribution still decreases exponentially with mode number, i.e.
the energy has not significantly diffused to the high frequencies through the
Arnold Web. The numerical estimate for the scaling is

kc ∼ (N3α2E)1/4 (2.54)

which the author was able to predict analytically. This is contrasted with the
result from Fig. 2.4, which indicates that

Neff ∼ (NβE)m , (2.55)

i.e. is governed by the number of modes that can satisfy the local overlap
condition R > 1 with R given in (2.48). Shepelyansky [62] has analytically
estimated m = 1/2.

The FPU-αmodel can be obtained as a third order truncation of the power
series expansion of the Toda lattice potential, defined by the Hamiltonian:
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H(p, q) =
N∑

k=1

p2
k

2
+
a

b

N∑

k=1

[exp(−b(qk+1 − qk)) + b(qk+1 − qk)− 1] . (2.56)

Since the Toda lattice is integrable, i.e. does not exhibit stochastic behavior,
the FPU-α is more stable than the FPU-β. However, because the nonlinear
potential is cubic the trajectories become unbounded at high energy. There-
fore, it is restricted to examining low-energy phenomena, as was described
above. Using (2.35) for calculating λ for neighboring trajectories, and choos-
ing the constants a and b in (2.56) to correspond to the FPU-α given in (2.1),
Pettini and co-workers [61] compared the variation with time of the inte-
grable and nonintegrable systems, with the result as shown in Fig. 2.6. The
initial conditions, starting on separate orbits, separate linearly (see [15]) from
which, calculating from (2.35) over short times, a large Lyapunov exponent is
obtained. However this effect continually diminishes in the averaging process
and, after a long time, only an average exponential divergence of the trajec-
tories remains. In Fig. 2.6 we show the value of λ stabilizing at the average
exponent for the FPU-α system, while it vanishes for the Toda system. As an
aside remark, we point out that the stabilized value of λ, shown in this figure,
is not necessarily the asymptotic value, but may correspond to a value in a
more localized region of the phase space. Without exploring this possibility
in detail we note that the numerical values of λ presented in Sect. 2.5, and
compared to calculations in Sect. 2.8, have been obtained in a way that should
be close to the infinite-time average.

Considerable effort has been directed toward the comparison of the FPU-
β chain with oscillator chains constructed from discretization of the Klein–
Gordon equation, particularly the φ4 chain, with the nonlinear term being
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Fig. 2.6. Maximal Lyapunov exponent vs. time for the Toda lattice (open squares)
and for the FPU-α model (solid triangles) for N = 32 and ε = 0.0217
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an on-site potential. However, little attention was given to the comparison on
shorter time-scales, from long-wavelength initial conditions. Comparing the
coefficients in (2.25) and (2.26), for small m, we see that the nonlinearity is
much weaker for long wavelengths (small ω for the FPU potential than for
the φ4 potential). The opposite holds for short wavelengths, where the ωs are
about 2 (for small m). Physically this is easily understood, as the forces be-
tween neighboring oscillators are quite small for the FPU at long wavelengths:
neighboring oscillators are in phase, with nearly the same amplitudes, while
at short wavelengths the nearly out of phase amplitudes amplifies the forces
between them, as compared to the nonlinear self-force of the φ4. The conse-
quences for the times to achieve equipartition, starting from either low- or
high-frequency initial conditions, will be presented in Sect. 2.8. The strong
nonlinearity, coupled with the weak dispersion at short wavelengths, which is
evident from either (2.23) or (2.24), leads to narrow structures in the oscil-
lator space, which exhibit the short-time characteristics of breathers. These
structures called chaotic breathers (CB’s) are introduced in Sect. 2.4.4, and
investigated in some detail in Sects. 2.6 and 2.7.2.

2.4.2 The Thermodynamic Limit

The analysis described in Sect. 2.4.1 of considering a few modes which contain
most of the energy, to understand the subsequent behavior, is appropriate for
finite, relatively small, values of N . We have already seen that for fixed ε and
increasing N , (2.48), with R > 1, for the FPU-β and (2.52) for the FPU-α
indicate local stochasticity and therefore diffusion throughout the phase space
in the Arnold web, but without specifying the time-scale. For fixed ε = E/N ,
approaching the thermodynamic limit (N →∞), other questions arise.

In Sect. 2.4.1 we saw, from various perspectives that at fixed E the number
of modes forming an energy-containing packet, in a reasonably short time,
would increase with N , while the fraction of modes neff = Neff/N would
remain constant. This implied that for fixed E equipartition would not be
reached, at least for computationally observable times, for large values of N .
However, at fixed E, ε decreases with increase in N , so the question of what
happens for fixed ε in the thermodynamic limit was not addressed.

In Sect. 2.3.1, we numerically indicate that the value of the largest Lya-
punov exponent decreases with the power law λ ∝ ε2, but for low values of N
there are faster drop-offs, which may be exponentially varying, as suggested
in the previous section. However, the drop-off value of ε occurs at increasingly
small ε as N is increased. Similarly, in Sect. 2.5.2, the time to equipartition
Teq increases as a power law in ε at smaller N , with any faster increases ap-
pearing at smaller ε as N is increased. The implication is that Teq ∝ ε−3 at
the thermodynamic limit.

From a different perspective, Galgani and coworkers [48, 49] used a con-
vergent perturbation theory to rigorously show that two groups of oscillators,
well separated in frequency space, would transfer energy exponentially slowly
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from the low to the high frequencies, i.e. energy would be “frozen out” of the
high-frequency oscillators over times τ ∝ exp(aωh/ωl) the ratio of the high
to low frequencies. Using these ideas, they estimated transfer times from low
to high frequencies for the FPU chain, but came to the conclusion that the
energy could not be bounded away from the high frequencies for exponentially
long times in the thermodynamic limit [118]. In the same paper they returned
to the concept of two well-separated groups of oscillators by employing the
alternating mass chain given in (2.20). As described in Sect. 2.2.2, with the
lighter mass m much smaller than the heavier unit mass, an optical branch
becomes thin with δωh ≈ (m/2)1/2 and can be treated in perturbation theory
as occurring at a single high frequency ωh ≈ (2/m)1/2. The upper edge of the
acoustic band is ωl(max) ∼ 1. The ratio appears in the rate of change of the
high-frequency action proportional to exp(−B(ωh/ωl(max))) at fixed N and
ε, in qualitative agreement with their previous work. However, B vanished
inversely with a power of N , and thus the high frequency modes were not iso-
lated in the thermodynamic limit. Their numerical studies with 0 < N < 200
were not conclusive, but indicated a weak N -dependence.

A similar oscillator chain to that given in (2.20), but with the heavy and
light masses distributed randomly, also resulted for finite N in only a partial
filling of the modes [134]. A calculation of neff , starting from long-wavelength
initial conditions, indicated that only the acoustic modes came to equipartion
in the time-scales investigated, with very little energy in the optical branch.
This is also consistent with exponentially slow transfer to the optical branch,
but definitive answers in the thermodynamic limit cannot be obtained from
numerically observable times. We present results in Sect. 2.5.

2.4.3 Long-Wavelength Approximations: KdV, mKdV; Stability;
Exact Periodic Solutions

In the introduction, we described, briefly, that Taylor series expansions for
long wavelengths of the FPU-α and FPU-β chains result respectively in the
KdV and mKdV partial differential equations. We illustrate the method for
the most extensively studied case of the mKdV approximation to the FPU-β
chain. Starting from the differential form of the oscillator equations

∂2yj
∂t2

= (yj+1 − yj)− (yj − yj−1) +
1
3
[
(yj+1 − yj)3 − (yj − yj−1)3

]
, (2.57)

where the displacements of the lattice sites have been rescaled to obtain the
nonlinear coefficient 1/3, Zabusky and Kruskal [44] used a Taylor expansion
to make y into a continuous variable y(x, t), using a integro-differential form

u ≡ − yt
2h

+
1
2

∫ yx

0

√
1 + h2η2dη (2.58)

to transform (2.57) in lowest order in Δx ≡ h = L/N into the equation
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uτ + 12u2uξ + uξξξ = 0, (2.59)

where L is the chain length, N the number of oscillators; the time and length
variables have been rescaled by τ = h3t/24 and ξ = x−ht, and the subscripts
t,x,τ ,ξ denote differentiation with respect to that variable.

Defining u by a differential in t and an integral in x reduced the time
derivatives by one and increased the space derivative by one to obtain the
well-known mKdV equation, which is integrable as we show below. We note,
however, that the choice of a unique direction in the variable ξ implies a
traveling solution and thus a solution only exists as a single nonlinear wave
on an infinite or periodic chain.

Periodic solutions, stationary in the frame ξ − Cτ , can be obtained by
integrating (2.59) twice, giving

1
2
u2
ξ + u4 − 1

2
Cu2 −Bu+A =

1
2
u2
ξ + P (u) = 0, (2.60)

where A and B are constants of integration. For a periodic lattice the mean
of u must be zero which implies B = 0. Equation (2.60) is in the form of a
one-degree-of-freedom Hamiltonian, which is therefore integrable. Equilibrium
solutions to (2.60) have been obtained in terms of the Jacobi elliptic functions
(or cnoidial waves) cn(ξ, q), with q2 (the modulus) taken as a parameter with
0 ≤ q ≤ 1. Driscoll and O’Neal [45, 46] examined the solutions for stability,
both analytically for long-wavelength perturbations, and numerically. They
determined the unstable modes of any solution u0 by numerically solving the
linearized eigenvalue problem

iνv − Cvξ + 12(u0v)ξ + vξξξ = 0, (2.61)

where u(ξ, τ) = u0(ξ) + v(ξ) exp(iντ). The waves are found to be stable if
all four roots of the associated polynomial P (u) are real, and unstable if two
roots are real and two are complex. Although the normalized time τ is scaled
by h ∝ 1/N , the complete rescaling of the normalized equations back to un-
normalized variables gives growth rates independent of N . Driscoll and O’Neil
then compared the growth rates with those found from numerical integration
of the equations of motion for the FPU chain with various values of N . For
wavenumber πk/L they obtain the growth rate as a function of the modulus
q2 of the elliptic function, as shown in Fig. 2.7. In this situation the growth of
the unstable modes in the continuous limit is found to be an upper bound on
the mode growth of the finite chain. A similar relation was also found to exist
between the existence of instability in the sine-Gordon equation and equiparti-
tion in an oscillator chain corresponding to the discretized sine-Gordon equa-
tion [95]. For the FPU system we would not expect the mKdV instability to
be directly related to equipartition among the high frequency modes, as the
mKdV differential equation does not describe these modes. However, mixing
of low-frequency modes in the continuous system corresponds to stochasticity
among low-frequency modes in the discrete system. To explore this further,
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Fig. 2.7. Scaled lattice instability rate γ (data points) and mKdV prediction (solid
curves) for cnoidal waves vs. modulus q2

we compare the onset of instability in the rescaled parameters of the mKdV
equation, as found by Driscoll and O’Neal, to the parameters governing the
interaction among the low-frequency modes in the four-mode analysis. The
rescaling of R from (2.48) gives the relationship R = (8/π2)(γ/2)2q2K2(q2),
where γ is the number of nodes of the cnoidal function and K(q2) is the
complete elliptic integral. The instability appears for q2 ≈ 0.25 (K = 1.7)
for γ = 2, which corresponds to Rc ≈ 0.58. This is close to the value which
produced a separatrix layer in the four-mode resonance interaction found in
Sect. 2.4.1, so we conclude that the mechanisms are related. The single-mode
initial conditions give rise to beat phenomenon, corresponding to stable soli-
tons. It is only when the solitons become unstable that this manifests itself
as chaos in the discrete system.

For the FPU-α oscillator chain a similar Taylor expansion and transfor-
mation to new variables, gives the KdV equation

uτ + uuξ +
1
24
uξξξ = 0 (2.62)

which is also integrable. However, for the KdV equation, linearization of the
solution does not exhibit unstable eigenvalues, and thus chaos appears when
the Taylor expansion breaks down at larger values of energy when the discrete-
ness leads to diffusion among the low-frequency modes. As with the mKdV
equation, a single soliton, which travels in a given direction, cannot satisfy
fixed boundary conditions so that more than one soliton is required to de-
scribe any prescribed initial condition.

For either the KdV or mKdV equation an initial condition consisting of a
long-wavelength linear mode, say
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u(τ = 0, ξ = x) = u0 cos
(

2πx
L

)
, (2.63)

where u ∼ ε1/2 (ε is the energy per degree of freedom in the FPU) will break up
into a set of solitons. The shortest wavelength of the resulting solitons can be
estimated from dimensional analysis [44, 135]. For long wavelengths, the dis-
persion is weak, therefore the dynamics is dominated by the nonlinearity. One
can therefore neglect the dispersive term, which for the KdV equation (2.62)
satisfies (1/24)uξξξ/(uuξ) < 1 or dimensionally

l−3

(
√
ε/l)

≤ 1 or lmin ∼ ε−1/4 . (2.64)

By reintroducing α, using the scaling ε → α2ε, and by considering that the
fraction of degrees of freedom neff 
 1/lmin, we obtain

neff ∼ α1/2ε1/4 . (2.65)

This result agrees with the scaling estimated and found numerically by She-
pelyansky [62], if neff = Neff/N is substituted in (2.54) and also coincides
with later studies of Biello et al. [136] and Berchialla et al. [137]. In a manner
similar to that described above, the scaling of neff with βε, for the FPU-β,
can be determined from the ratio of dispersive to nonlinear terms in (2.59),
giving

l−3

ε/l
≥ 1 or lmin ∼ ε−1/2 . (2.66)

Changing ε to ε→ βε and neff 
 1/lmin, we obtain

neff ∼ (βε)1/2 . (2.67)

This result is in agreement with the estimate by Shepelyansky [62], but dif-
ferent from the scaling found numerically in Fig. 2.4, which, however, has not
been examined for large N , where (2.67) applies.

It has also been recently shown [133] that it is possible to construct exact
periodic solutions of the FPU chains, for fixed βε at finite N , by a Newton
method. The authors called the solutions q-breathers (QBs) in analogy to
short-wavelength solutions of a few oscillators, since they designated the lin-
ear mode number by q. These solutions are complementary to those obtained
from continuous approximations. For the FPU-α and FPU-β, asymptotic ex-
pansions in the small parameters ρ = α/

√
2(N + 1) and σ = β/(2(N + 1)),

respectively, produce exponentially decaying linear-mode spectra, similar to
those described in Sect. 2.4.1, and similar to expansions obtained from soliton
solutions with periodic boundary conditions. Unlike the solitons, the periodic
solutions cannot be summed to produce the initial conditions of a single linear
mode. Nevertheless, for small perturbation parameters, they are sufficiently
close to single-mode initial conditions that interesting results can be obtained
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from them to compare to the usual numerics. For the FPU-β, the periodic so-
lutions become unstable, similar to the instability we have seen in the mKdV
equation. A very interesting result is that the bifurcation to unstable solutions
of the FPU-β chain occurs at a value of R = 1 + O(1/N2); from Sect. 2.4.1
we recall that R = 6βE(N + 1)/π2 relates nonlinear to linear terms in the
Hamiltonian. The condition R 
 1 was a semi-quantitative transition for reso-
nance overlap, leading to local chaos. Here we find that the condition becomes
precise for the onset of an instability that also leads to local chaos. We note
again, as in Sect. 2.4.1, that with increasing N the value of βE at which
the instability occurs continually shrinks to reach zero in the thermodynamic
limit.

2.4.4 Short-Wavelength (high-frequency) Initial Conditions

Let us consider the equations of motion in Fourier space for the FPU-β model
with periodic boundary conditions qi = qi+N

Q̈r = Fr(Q1, . . . , QN−1) , r = 1, . . . , N − 1 , (2.68)

where

Fr(Q1, . . . , QN−1) = −ω2
r Qr −

βωr
2N

N−1∑

j,k,l=1

ωjωkωl CrjklQjQkQl , (2.69)

and the frequencies are in this case

ωk = 2 sin
(
πk

N

)
k = 0, . . . , N − 1. (2.70)

The coupling coefficients, analogous to those in (2.25) for fixed boundaries,
are given by

Cijkl = −Δi+j+k+l + Δi+j−k−l + Δi−j+k−l + Δi−j−k+l , (2.71)

where

Δr =
{

(−1)m for r = mN withm ∈ Z
0 otherwise . (2.72)

The center of mass motion is decoupled; this is why the sum in (2.68) extends
up to N − 1. A natural question that arises is whether a set of modes exists
which is decoupled from the others. If we put the energy only in this set, this is
not shared by the others. Such a set is an invariant manifold in Fourier space.
The question of existence has been positively solved [70, 71]. For instance,
modes

k =
N

4
;
N

3
;
N

2
;

2N
3

;
3N
4

(2.73)

are decoupled and are the only one-mode solutions with this property. The
time-dependence of such periodic solutions is given in [70]. Moreover periodic
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and quasi-periodic solutions evolving on two-mode manifolds have been de-
rived, and a full classification of higher dimensional invariant manifolds has
been obtained. The existence of these invariant manifolds is related to spatial
symmetries [71, 72].

The question of linear stability is more difficult and it has been solved
analytically only for the zone boundary mode k = N/2. In this case, one finds
the critical energy Ec (β = 1)

Ec =
2N
9

sin2
( π
N

) 7 cos2 (π/N)− 1
[3 cos2 (π/N)− 1]2

. (2.74)

Above this energy, the zone-boundary mode solution looses stability by de-
veloping a spatial modulation. The initial zig-zag spatial pattern deforms in
such a way to create a smooth long-wavelength envelope, with many bumps.
Since the critical energy vanishes as N increases, in the thermodynamic limit
the zone-boundary mode is always unstable. However, the rate at which the
instability develops diverges with system size N [70]. The development of
the instability leads to the creation of a “chaotic breather,” as discussed in
Sects. 2.4.5 and 2.4.6

Such instabilities exist also for other invariant modes and set of invariant
modes, but have not yet been studied carefully neither analytically nor numer-
ically. For instance, it is well known that if the energy is initially put in even
(odd) modes in a FPU chain with an even number of oscillators and periodic
boundary condition, energy remains in the set of even (odd) modes forever,
until a critical energy is reached above which energy is exchanged among the
two sets. In fact the set of even (odd) modes is an invariant set, according to
our definition.

Let us sketch the derivation of formula (2.74) following Dauxois et al. [138].
Due to periodic boundary conditions, the normal modes are plane waves of
the form

qn(t) =
a

2

(
eiθn(t) + e−iθn(t)

)
(2.75)

where θn(t) = qn− ωt and q = 2πk/N (k = −N/2, . . . , N/2). The dispersion
relation of nonlinear phonons in the RWA given by (2.86) is ω2(q) = 4(1 +
Δ) sin2(q/2), where Δ = 3a2 sin2(q/2) takes into account the nonlinearity.
Modulational instability is investigated by studying the linearized equation
associated with the envelope of the carrier wave (2.75). Therefore, one intro-
duces infinitesimal perturbations in the amplitude and phase and looks for
solutions of the form

qn(t) =
a

2
[1 + bn(t)] exp(i[θn(t) + ψn(t)]) +

a

2
[1 + bn(t)] exp(i[θn(t) + ψn(t)])

= a[1 + bn(t)] cos[qn− ωt+ ψn(t)] , (2.76)

where bn and ψn are reals and assumed to be small in comparison with the pa-
rameters of the carrier wave. Substituting (2.76) into the equations of motion,
one obtains for the real and imaginary part of the secular term exp(i(qn−ωt))
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−ω2bn + 2ωψ̇n + b̈n = (1 + 2Δ) [cos q (bn+1 + bn−1)− 2bn]
−Δ (bn+1 + bn−1 − 2bn cos q)− (1 + 2Δ) sin q (ψn+1 − ψn−1) (2.77)
−ω2ψn − 2ωḃn + ψ̈n = (1 + 2Δ) [cos q (ψn+1 + ψn−1)− 2ψn]
+(1 + 2Δ) sin q (bn+1 − bn−1) + Δ (ψn+1 + ψn−1 − 2ψn cos q) . (2.78)

Further assuming bn = b0 ei(Qn−Ωt) + c.c. and ψn = ψ0 ei(Qn−Ωt) + c.c. one
gets the two following equations for the secular term ei(Qn−Ωt)

b0[Ω2 + ω2 + 2(1 + 2Δ)(cos q cosQ− 1)− 2Δ(cosQ− cos q)]
−2iψ0 [ωΩ + (1 + 2Δ) sin q sinQ] = 0 (2.79)
ψ0[Ω2 + ω2 + 2(1 + 2Δ)(cos q cosQ− 1) + 2Δ(cosQ− cos q)]
+2ib0 [ωΩ + (1 + 2Δ) sin q sinQ] = 0. (2.80)

Nontrivial solutions for the linear system of (2.79)–(2.80) can be found only
if the equations determinant vanishes, i.e. if the following equation is fulfilled:

{
(Ω + ω)2 − 4(1 + 2Δ) sin2

(
q +Q

2

)}
×

×
{

(Ω− ω)2 − 4(1 + 2Δ) sin2

(
q −Q

2

)}
= 4Δ2 (cosQ− cos q)2 .

(2.81)

This equation admits four different solutions when the wavevectors q of the
unperturbed wave and Q of the perturbation are fixed. If one of the solutions
is complex, an instability of one of the modes (q ± Q) is present, with a
growth rate equal to the imaginary part of the solution. Using this method,
one can derive the instability threshold amplitude for any wavenumber. A
first interesting case is q = π, the zone-boundary mode. One can easily see
that (2.81) admits two real and two complex conjugate imaginary solutions if
and only if

cos2
Q

2
>

1 + Δ
1 + 3Δ

. (2.82)

The first mode to become unstable when increasing the amplitude a corre-
sponds to the wavenumber Q = 2π/N . Therefore, the critical amplitude ac

above which the q = π-mode looses stability is

ac =
(

sin2 (π/N)
3 [3 cos2 (π/N)− 1]

)1/2

. (2.83)

Since for the π-mode the energy is given by E = N(2a2 + 4a4), one obtains
the critical energy given in (2.74). The asymptotic behavior for large N of
this formula gives the same threshold as (2.99) in Sect. 2.4.6, see also [81,
139]. This critical energy is also very close to the Chirikov threshold for short
wavelength (2.7).
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2.4.5 Expansions for Generic Discrete Systems-Envelopes

If we excite a high-frequency mode, γ, with n ≡ N +1− γ � N +1, then the
instantaneous oscillator amplitude alternates from one oscillator to the next.
As in previous studies [90, 91, 92], to remove this fast variations an envelope
function ψi(t) = (−1)iqi(t) is introduced, giving a smoothed spatial profile.
The smoothed profile allows the oscillator to be described by a continuous
variable from a Taylor expansion, giving

ψtt + 4ψ + 16βψ3 + {ψxx + 12β(ψψ2
x + ψ2ψxx)}+ · · · = 0 , (2.84)

where subscripts t and x stand for temporal and spatial derivatives of ψ(x, t).
Linear terms with spatial derivatives describe the dispersion, the dependence
of the frequency ω on effective wave number πk/(N + 1) in (2.84), while
nonlinear terms produce a frequency shift, that steepens the envelope function
tending to form localized states (CBs). This process qualitatively explains why
relaxation is accompanied by the formation of sharply localized states if energy
is initially deposited in the high-frequency part of the spectrum, where the
effect of dispersion is small, while only broad nonlinear structures are formed
if the energy is initially in the low frequency modes where the dispersion is
large [92]. Keeping the leading terms proportional to powers of degree zero
and two and assuming a monochromatic dependence ψ(x, t) = ψ(x) cos(ωt),
leads to an equation for ψ(x)

(−ω2 + 4)ψ + ψxx + β(12ψ3 + 9ψψ2
x + 9ψ2ψxx) = 0 , (2.85)

where we have used the RWA, i.e. the expansion

cos3(ωt) = (3/4) cos(ωt) + (1/4) cos(3ωt), (2.86)

and dropped terms proportional to cos(3ωt) [90, 91]. Neglecting terms pro-
portional to β yields a linear equation for the eigenmodes:

(−ω2 + 4)ψ + ψxx = 0 . (2.87)

Solving (2.87) with zero boundary conditions at x = 0 and at x = N +1 gives
eigenmodes for n = N+1−k� N+1 which correspond to the high-frequency
linear normal modes of the discrete FPU chain

ψ(0)
n (x) = ψmax,n sin(qnx) , ω2 = 4− q2n , qn =

πn

N + 1
. (2.88)

The nonlinear equation (2.85) has exact analytical solutions, ψ(x), which are
periodic functions of x. There are three types of solutions:

(i) the infinite chain having a single localized breather with ψ(x) → 0 as
x→ ±∞, with frequency ω = ωB

ω2
B = 4 + 6βψ2

m , (2.89)

where ψm is the breather maximum amplitude given in (2.91);
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(ii) the chain with periodic boundary conditions including the π-mode for
which each oscillator has opposite phase and equal amplitude as its neigh-
bors, and, correspondingly, the envelope function ψ = ψmax = ψmin ≡ ψm,
a constant, for which the nonlinear frequency shift reaches a maximum
value

ω2
B = 4 + 12βψ2

m, (2.90)

(iii) and the case of fixed zero displacement at x = 0 and x = N + 1, with
intermediate values of ωB.

For a single breather, n = 1, the breather structure is similar to a breather
on an infinite line which has analytic approximations for small and large
amplitude. For 9βψ2

m � 1

ψB(x) =
ψm

cosh(
√

6βψmx)
, (2.91)

while in the large amplitude case 9βψ2
m � 1, the breather has a finite width

of 4–5 oscillators

ψB(x) = ψm cos

√
2
3
x |x| < π

√
3
8
. (2.92)

For most numerical studies of oscillator chains the initial state imposed on
the system is that of a single linear mode. This state is generally not close
to an equilibrium. The initial state rapidly relaxes, governed by the nonlin-
ear equations. The evolution may be influenced by the underlying stability
of nearby equilibria, but cannot be analyzed directly as perturbations around
those equilibria. It is also possible to prepare the initial condition to be close
to an equilibrium and consequently to directly analyze linear stability. The
envelope solutions are fast oscillating functions of time which are subject to
parametric (modulation) instability, i.e. an instability which is driven by the
periodic variation of the frequency that appears in the linear equation for
a perturbation. The frequency shift is caused by the nonlinearity in the un-
perturbed envelope solution. For the usually applied modal initial conditions,
unstable breakup of modes is observed [87, 88]. However, numerical calcula-
tions show that the nonlinear stage of this instability leads to the formation
of long-living self-organized localized structures, the chaotic breathers, which
appear to be marginally stable with respect to a fast modulational instability.

Another question is how many breathers appear after the relatively short
time of evolution from an initial state. In this context, fixed zero boundary
conditions are significantly different from the π-mode initial values for peri-
odic boundary conditions. In the periodic case, the π-mode is simultaneously
a normal mode of the linear problem and an exact solution to the nonlin-
ear envelope equation. Evolution from this equilibrium state is initiated by a
modulation instability, and the wavelength of the fastest growing mode of the
linearized equations gives an estimate of the number of breathers generated
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during the nonlinear phase of instability. In the case of zero boundary condi-
tions, the high-frequency normal modes do not satisfy the nonlinear envelope
equation. When used as initial conditions at low energy, they relax toward or
around a few nearest stable equilibrium solutions. We expect that the linear
analysis could, at best, only qualitatively describe their evolution.

2.4.6 Instability from Short-Wavelength Initial Conditions

For analysis of nonstationary envelopes, which describe relaxation, instabil-
ity, or breather translational motion, it is convenient to rewrite the basic
equation (2.84) in the form of two coupled equations for amplitude q(x, t) and
phase φ(x, t)

ψ(x, t) = q(x, t) cos(ωt+ φ(x, t)) . (2.93)

Substituting (2.93) in (2.84) and collecting terms proportional to sin(ωt +
φ(x, t)) and cos(ωt+ φ(x, t)) leads to coupled equations

qφtt + 2qt(ω + φt) + 2qxφx + qφxx + 12βq2qxφx + 3βq3φxx = 0 , (2.94)

qtt − (ω + φt)2q + 4q + qxx − qφ2
x + 12βq3 + 9βq(qx)x − 6βq3φ2

x = 0 . (2.95)

The frequency ω is a constant given approximately by (2.89) and determined
by the amplitude of the unperturbed solution. When the amplitude is slightly
varied, q(x, t) = ψ(x)+ δq(x, t), the frequency of the fast nonlinear oscillation
is also varied. As ω is taken to be contant this effect is represented by the
time-varying phase, φ(x, t) = δφ(x, t). Since (2.94) depends on derivatives
of δφ(x, t), but not the phase itself, it can be linearized by considering the
derivatives of δφ(x, t) as first order corrections. This yields two coupled linear
equations

2ωδqt + ψδφtt + 2ψx(1 + 6βψ2)δφx + ψ(1 + 3βψ2)δφxx = 0 , (2.96)

δqtt+((1+9βψ2)δqx)x+(4−ω2+36βψ2+18βψψxx+9βψ2
x)δq−2ωψδφt = 0 .

(2.97)
These equations have been solved numerically under various assumptions,

with the result being that breather equilibria in chains with fixed ends are
probably marginally stable to parametric instabilities [93]. This probably
accounts for the long-time stability of the breathers that are formed from
the parametric instabilities of mode initial conditions. To explore the latter
situation a useful approximation is to consider the case of constant spatial
profile of the envelope ψ(x, t) = ψm cosωt. This corresponds to the π-mode
with periodic boundary conditions, which has the highest nonlinear frequency
shift (2.90) [91]. This mode is a solution to (2.85) but does not belong to the
envelope solutions with zero boundary conditions. Setting the spatial deriva-
tive of ψ(x) equal to zero, (2.96) and (2.97) reduce to coupled equations for
δφ(x, t) and δq(x, t), with constant coefficients. They can be solved by letting
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δq(x, t) ∝ δφ(x, t) ∝ exp(st + ikx) which gives a biquadratic equation for s.
Substituting for ω from (2.90), the result is

s4 + 2[36y + 8− k2(1 + 6y)]s2 = k2(1 + 3y)[24y− k2(1 + 9y)] ,
y = βψ2

m . (2.98)

This gives a threshold for the modulation instability of the π-mode

6βψ2
m

(N + 1)2

π2
> 1 . (2.99)

There is a most unstable wavenumber km which corresponds to the maximum
of the growth rate, sm. In the limit of small ψm, 9y � 1, the value of km and
sm is found by dropping s4, then setting d(s2)/d(k2) = 0, to obtain [91]

km =
√

12βψm , sm = 3βψ2
m . (2.100)

For intermediate amplitude envelopes all terms are included in (2.98). In the
limit of large amplitudes 9y � 1, the fastest growing mode has wavenumber
and maximum growth rate [92]

km = 1.23 , sm = 0.93
√
βψm . (2.101)

Comparing (2.100) and (2.101), the transition from small to large amplitude
takes place at βψ2

m 
 1/9 which corresponds, for β = 0.1, to ψm 
 1.
These results have been checked by numerical calculations, starting from

various mode initial conditions, obtaining reasonable agreement [93]. For
example, in one way of forming initial conditions one can take a set of
Fourier modes to approximate a square wave, using an = 4/πn, n odd, with
n = N + 1 − γ (γ is an initial k-value). Considering the nine highest fre-
quency modes, for E=16, one obtains the evolution as shown, at three times,
in Fig. 2.8. The initial nine ripples, with large end-values, in Fig. 2.8a, are
characteristic of the Fourier sum. The evolution through various transitions,
e.g., Fig. 2.8b at t = 100, leads to a large amplitude fastest growing mode at
t = 220 with a wavelength of λ = 16, Fig. 2.8c, which is predicted from (2.100).
The growth time from the first emergence of the fastest growing mode (not
shown) is also consistent with the observations. The fastest growing k-value is
established from either a smaller or a larger number of initial modes than the
corresponding value nm = 128(2π/km). In either case, the subsequent time
evolution, on a slower time-scale, is to form nonlinear chaotic breathers which
coalesce and then decay to equipartition, on slower time-scales.

For the φ4 oscillator chain, starting from (2.9), one can make the same
Taylor expansion used for the FPU chain, followed by the rotating wave ap-
proximation, to obtain [94]

(ω2 +m2 + 4)ψ + ψxx +
3
4
βψ3 = 0, (2.102)
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Fig. 2.8. Illustrating a set of initial conditions fixed at the ends but with a
9-mode Fourier spectrum approximating a π-mode distribution in the central re-
gion, at times: (a) t = 10, (b) t = 100, (c) t = 220. The predicted fastest growing
mode has λm = 16, in agreement with the results seen in (c).

which is to be compared with (2.85). One observes three differences: the extra
linear coefficient m2, the smaller coefficient of the ψ3 term (3/4 rather than
12), and the absence of the mixed cubic terms. For most comparisons, we
choose m small (m = 0.1), which is negligible compared to 4, and the mixed
cubic term in the FPU plays only a minor role in the dynamics. The remaining
clear difference is the factor of 16 that the ψ3 term is smaller in the φ4 envelope
than the FPU envelope. This factor is clearly understood by a comparison of
the original FPU and φ4 Hamiltonians (2.1) and (2.9). Since the nonlinear φ4

potential results from a self force, the potential arises only from the extension
of the mass point qi and is therefore quartic in that extension. In contrast,
the FPU quartic potential arises from the difference of neighboring oscillators
(qi+1 − qi). Since these oscillators are approximately π out of phase, there is
an increase of 4 factors of 2 in the quartic potential, i.e. 16. The effect of the
factor of 16 is reflected in all subsequent calculations, appearing linearly in the
instability threshold (2.99), as a square-root in the most unstable wavenumber
km (2.100) and linearly in the maximum growth rate sm (2.100), which were



2 Dynamics of Oscillator Chains 67

found numerically in comparisons between the two chains [94]. Care must be
taken in the comparisons if the energy E is used as the parameter, because
there is a range of scalings of ψm with E from low to high energy (see [93, 94],
for a detailed treatment). We will return to these comparisons of scalings in
later sections describing the stochastic behavior.

In Sect. 2.4.5 we saw that the envelope approximation with periodic bound-
ary conditions has an equilibrium solution that is exactly constant, the bound-
ary or π-mode. This equilibrium becomes unstable at an envelope amplitude
given by (2.99), and, using the low amplitude approximation for the energy,

E ≈ 2Nψ2
m , (2.103)

then (2.99) yields the energy border of instability

βE >
π2

3N
. (2.104)

This result can also be found directly from the discrete π-mode [70], so does
not depend on the envelope expansion. For the FPU-β chain with fixed ends,
the instability still exists, but is only approximately given by (2.104), as the
envelope equilibrium no longer has an expansion that yields an exact border
of instability. Although the envelope equilibrium of the π-mode results from
breather-like equations, it is an extended mode, rather than the usually stud-
ied intrinsically localized modes (ILMs), which are much more stable. This
general class of short-wavelength modes, near the π-boundary mode, had pre-
viously been studied by Berman and Kolovskii [81] using a different technique.
Starting from the mode representation for the FPU-β chain, and assuming
that only a few modes neighboring the π-mode were present, they expanded
about that wave number kπ as n = k − kπ (n � kπ), and removing the fast
oscillations by factoring out exp [(iωπ + λn)t], λ = 2(π/N) cos(πkπ/N), from
the modes, they arrive at the nonlinear Schrödinger (NLS) equation

i
∂Φ
∂t

= Ω
∂2Φ
∂θ2

+ V0|Φ|2Φ , (2.105)

where V0 = (3β/N) sin2(πkπ/N), Ω = (π/N)2 sin(πkπ/N), and Φ(θ, t) =
Φ(θ+2π, t). The NLS equation, like the KdV equation, is completely integrable
with soliton-like solutions. However, like the mKdV equation, the solitons
are subject to an instability which can be calculated by linearization of the
equilibrium, as outlined for the envelope approximation in Sect. 2.4.5. The
result, for instability, is the same as in (2.104), but now involves a narrow
mode packet, rather than the single π-mode. It is also close to the Chirikov
mode overlap criterion for local chaos, which from (2.7) can be written as
βE ≈ 2π2/3N . As already discussed, all of these criteria signal the onset of
local chaos in the discrete chain, but do not inform us about equipartition on
nonexponential time-scales. However, the Berman–Kolovskii paper considers a
second transition at which the narrow packet approximation breaks down and
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therefore the NLS approximation is no longer valid. For this higher energy,
the packet size is not contained, which may lead to power-law time-scales to
equipartition. The value they estimate is

βE >
2π2

3
, (2.106)

which is independent of N . This high-frequency estimate is quite close to the
low-frequency estimate (2.50), both predicting nonexponentially slow diffu-
sion, which survives in the thermodynamic limit. Both (2.106) and (2.50) give
results for extended modes, which is the relevant result for low frequencies; but
for high frequencies (2.106) does not take into account the later developments,
predicting the formation of long-lived but not fully stable ILMs (the CBs).
The original work included qualitative numerical support for both (2.104)
and (2.106). A more detailed numerical investigation, including the formation
and slow decay of the CBs, is given in Sect. 2.6. Some recent comments on,
and reference to extensions of, the narrow packet approximation can be found
in [140].

2.4.7 Geometric Formalism and the Method of Estimating
the Largest Lyapunov Exponent

As already mentioned in the Introduction, classical perturbation theory
(CPT) is inadequate to describe the properties of Hamiltonian dynamics when
the phase space is formed by chaotic orbits, even if a perturbative descrip-
tion is justified when the time-scales are short with respect to the instability
time-scales. For the transition from weak stochasticity to strong stochasticity
in high-dimensional systems, the perturbative treatment is completely inad-
equate, due to the energies involved which are much larger than the values
for which it is meaningful to consider the systems as quasi-integrable. More-
over, the canonical transformation from natural coordinates to angle-action
variables, which is a prerequisite to tackle chaos from the point of view of ho-
moclinic intersections, is very complicated and necessarily approximated, not
to speak of the lack of the generalization of the Poincaré–Birkhoff theorem at
arbitrary N concerning the fate of resonant tori, another necessary prerequi-
site for the standard description of chaos through homoclinic intersections.

A problem that naturally arises is how to explain the origin of a Strong
Stochasticity Threshold (SST) and how to compute, the crossover energy. Ac-
cording to the above arguments, one has to look for some nonperturbative
method. The only rigorous theoretical framework dealing with the opposite
situation of CPT, i.e. with completely chaotic trajectories, is ergodic theory.
We have already mentioned in Sect. 2.1.3 that it was Krylov who first realized
the relevance of mixing for statistical mechanics, and the relevance of the sta-
bility properties of geodesics on Riemannian manifolds of negative curvature
for mixing. More recently, the geometric approach has been reconsidered with
the aid of numerical simulations, finding out that the dominant mechanism
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for dynamical instability in physically relevant geodesics flows is parametric
instability due to curvature variations along the geodesics, instead of the neg-
ative curvature [141, 142, 143, 144].

For a dynamical system described by the Lagrangian function

L(q, q̇) =
1
2
aik(q)q̇iq̇k − V (q) , (2.107)

according to Maupertuis’ principle of stationary action, among all the possible
isoenergetic paths γ(t) with fixed end points, the paths which make the first
variation of the action functional vanish, which is such that

δA = δ
∫

γ(t)

pi dqi = δ
∫

γ(t)

∂L

∂q̇i
q̇i dt = 0 (2.108)

are natural motions.
Since 2W = q̇i∂L/∂q̇i , is the kinetic energy, Maupertuis’ principle reads

δ
∫

γ(t)

2W dt = δ
∫

γ(t)

(
gik q̇

iq̇k
)1/2

dt = δ
∫

γ(s)

ds = 0 . (2.109)

The last integral indicates that if the configuration space M of a system with
N degrees of freedom is given a proper Riemannian structure by introducing
the metric [42, 145]

gik = 2[E − V (q)]aik (2.110)

so that ds2 = 4[E−V (q)]aijdqidqj is its arclength, then the trajectories of the
Newtonian motions coincide with the geodesics of the manifold M endowed
with the metric tensor (2.110). This metric is known as the Jacobi metric and
is defined in the region of the configuration space where E > V (q). In local
coordinates, the geodesic equations on a Riemannian manifold are given by

d2qi

ds2
+ Γijk

dqj

ds
dqk

ds
= 0 (2.111)

where s is the proper time and Γijk are the Christoffel coefficients of the Levi-
Civita connection associated with gik [146]. By direct computation, it can be
easily verified that the geodesic equations, together with the relation between
s and t, i.e. ds2 = 4[E − V (q)]dt2, yield

d2qi

dt2
= −∂V

∂qi
, (2.112)

i.e. Newton’s equations associated with the Lagrangian (2.107).
The stability of an orbit is related to the curvature of the Riemannian

manifold. If we define the curvature K at a point x relative to a tangent plane
πa which is spanned by the vectors u, v at x, then

K(u, v) = K(x, π) =
〈R(v, u)u, v〉
|u ∧ v|2 , (2.113)
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where R is the Riemann–Christoffel curvature tensor [146]. K turns out to be
independent of the choice of the two vectors u, v in π. The knowledge of K
for the N(N − 1) planes π spanned by a maximal set of linearly independent
vectors completely determines R at x. If dim(M) = 2 then K coincides with
the Gaussian curvature. A manifold is isotropic if K(x, π) does not depend
on the choice of the plane π. The remarkable result (Schur’s theorem [146]) is
that in this case K is also constant, i.e. it also does not depend on the point x.
For a constant-curvature, i.e. isotropic, manifold (2.113) reduces to a constant

K =
1

N(N − 1)
R , (2.114)

where N is the number of degrees of freedom and R is the scalar curvature.
For a congruence of geodesics {γτ (s) = γ(s, τ) | τ ∈ R} issuing from a

neighborhood I of a point of a manifold [for more details see [142]], dependent
on the parameter τ , fixing a reference geodesic γ̄(s, τ0), if γ̇(s) is the vector
field tangent to γ̄ in s, and J(s) the vector field tangent in τ0 to the curves
γs(τ) for a fixed s, then the evolution of J contains the information on the
stability (or instability) of the reference geodesic γ̄; if |J | grows exponentially,
then the geodesic will be unstable in the Lyapunov sense, otherwise it will be
stable. It is remarkable that such an evolution is completely determined by
the curvature tensor R, which is a consequence of the fact that J is a Jacobi
field, i.e. it obeys the equation

∇2
γ̇J(s) + R(J(s), γ̇(s))γ̇(s) = 0 . (2.115)

Among several Riemannian geometrizations of Newtonian dynamics, a very
interesting one is defined in an enlarged configuration spacetime M×R2, with
local coordinates (q0, q1, . . . , qi, . . . , qN , qN+1), endowed with a nondegenerate
pseudo-Riemannian metric whose arc-length [147]

ds2 = gμν dqμdqν = aij dqidqj − 2V (q)(dq0)2 + 2 dq0dqN+1 (2.116)

is called the Eisenhart metric. The natural motions are obtained as the canon-
ical projection on the configuration space-time of those geodesics for which
the arclength is positive-definite and given by ds2 = (const.)2dt2. The geo-
metric formulations of Newtonian dynamics, based on Jacobi and Eisenhart
metrics, respectively, are equivalent. The interest in the Eisenhart metric is
that the instability equation for the geodesic spread (2.115) written in this
metric yields the standard tangent dynamics equation which is commonly
used in numerical computations of Lyapunov exponents.

We note, parenthetically, that the two basic topological conditions for the
onset of chaos in any deterministic dynamics are stretching and folding of
volumes in phase space [148]. In the case of Hamiltonian chaos, these two
conditions are fulfilled by the existence of homoclinic intersections [15, 148].
In the Riemannian description of Hamiltonian chaos, stretching of nearby
trajectories is provided by instability, and folding by not allowing the distance
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to grow indefinitely, i.e. by compactness. In this way, the phase trajectories
forget the initial conditions; their evolution becomes unpredictable in the long
run. In the majority of systems of physical interest, the configuration space
is a bounded domain so that the instability of nearby trajectories, studied by
means of (2.115), implies chaos.

In the particular case of isotropic (or constant curvature) manifolds, (2.115)
becomes very simple: choosing a geodesic frame, i.e. a reference frame trans-
ported along a reference geodesic, the Jacobi equation is written as

d2J

ds2
+K J = 0 , (2.117)

and has either bounded oscillating solutions ‖J‖ ∝ cos(
√
K s) or exponentially

unstable solutions ‖J‖ ∝ exp(
√
−K s) according to the sign of the constant

sectional curvature K. If the curvatures are negative, the geodesic flow is
unstable even if the manifold is no longer isotropic. Equation (2.117) is valid
only if K is constant. Nevertheless, for dimM = 2 (surfaces), the Jacobi
equation, again written in a geodesic reference frame for the sake of simplicity,
takes a form very close to that of isotropic manifolds,

d2J

ds2
+

1
2
R(s)J = 0 , (2.118)

whereR(s) denotes the scalar curvature of the manifold at the point P = γ(s).
This equation helps in understanding the origin of geodesic instability besides
hyperbolicity. In fact, the solutions of (2.118) may exhibit an exponentially
growing envelope even if the curvature R(s) is everywhere positive but non
constant. This is the case, for example, of two harmonic oscillators coupled
through cubic or quartic terms [143, 149].

In many physically relevant systems (typically a set of coupled anhar-
monic oscillators on a lattice in d space-dimensions) the curvatures are neither
constant nor everywhere negative, and the straightforward approach based
on (2.117) does not apply. This is the main difficulty in extending the meth-
ods of abstract ergodic theory to physically relevant models. The key point is
to realize that negative curvatures are not strictly necessary for chaos, with the
bumpiness of the manifold, being responsible for curvature fluctuations along
the geodesics, that can trigger parametric instability and hence exponentially
growing solutions of the stability equation (2.118).

In the large N case, under a set of suitable hypotheses [for details see [60]],
it is possible to derive a scalar effective stability equation resembling (2.118),
where the role of R(s) is played by a random process, from which an analytic
estimate of the largest Lyapunov exponent can be obtained. The theory leads
to the stochastic equation

d2ψ

ds2
+ 〈kR〉ΣE ψ + 〈δ2kR〉1/2ΣE

η(s)ψ = 0 , (2.119)
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where ψ denotes any of the components of J in (2.115) because all of them
are assumed to obey the same effective equation of motion. Here 〈kR〉ΣE is
the microcanonical average of the 1/N fraction of the Ricci curvature KR

of the mechanical manifold2, and 〈δ2kR〉ΣE ≡ 1
N−1 〈δ

2KR〉ΣE is the variance
of the Ricci curvature of the mechanical manifold averaged on the constant
energy manifold ΣE = H−1(E); finally, η(s) is a Gaussian δ-correlated random
process of zero mean and unit variance.

Equation (2.119) is a scalar equation which, independently of the knowledge
of dynamics, provides a measure of the average degree of instability of the
dynamics through the growth-rate of ψ(s). The peculiar properties of a given
Hamiltonian system enter (2.119) through the global geometric properties
〈kR〉ΣE and 〈δ2kR〉ΣE of the ambient Riemannian manifold. Moreover these
averages are functions of the energy E of the system (and of the energy density
ε = E/N , which is the relevant quantity for N → ∞), so that from (2.119)
one can obtain the energy dependence of the geometric instability exponent.

Equation (2.119) is of the form

d2ψ

ds2
+ Ω(s)ψ = 0 (2.120)

representing a stochastic oscillator where the squared frequency Ω(s) is
the above described stochastic Gaussian process. The process Ω(t), with
proper time s replaced by physical time t, is assumed to be stationary
and δ-correlated, that is its time correlation function ΓΩ(t1, t2) is such that
ΓΩ(t1, t2) = ΓΩ(|t2 − t1|) and ΓΩ(t) = τ σ2

Ω δ(t) , where τ is a characteristic
time-scale of the process. The evaluation of this time-scale is still a rather
delicate point, where some arbitrariness enters the theory. In studying vari-
ous models an estimate has been successfully introduced, which combines the
evaluation of the time needed to join two successive conjugate points along a
geodesic (conjugate points are those points where the Jacobi field vanishes)
with another time-scale which can be inferred by means of dimensional argu-
ments. In [60] arguments are given which lead to the following two time-scales

τ1 =
〈

dt
ds

〉
π

2
√

Ω0 + σΩ

(2.121)

and

τ2 =
〈

dt
ds

〉
l2Ω0

6
2π√
Ω0


 Ω1/2
0

σΩ
, (2.122)

respectively, where l is defined as l = 1/
√
σΩ, and Ω0 = 〈δ2kR〉ΣE , σΩ =

〈kR〉ΣE , whence τ in ΓΩ(t) = τ σ2
Ω δ(t) is obtained by combining τ1 with τ2

as follows
2 The Ricci curvature is the sum of the N−1 curvatures K, given in (2.113), relative

to the N − 1 planes spanned by a given vector v and N − 1 other (unit) vectors
orthogonal to v. In components, KR = Rj

ijkvivk, where Rj
ijk are the components

of the Riemann curvature tensor.
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τ−1 = 2
(
τ−1
1 + τ−1

2

)
. (2.123)

Whenever Ω(s) in (2.120) has a nonvanishing stochastic component, the
solution ψ(s) is exponentially growing on the average [150]. By considering
the proper time parametrization as a function of the physical time t, the
estimate of the largest Lyapunov exponent from the physical time growth-
rate of [ψ2(t) + ψ̇2(t)] is then given by

λ = lim
t→∞

1
2t

log
ψ2(t) + ψ̇2(t)
ψ2(0) + ψ̇2(0)

. (2.124)

The ratio (ψ2(t)+ ψ̇2(t))/(ψ2(0)+ ψ̇2(0)) is computed by means of a tech-
nique developed by Van Kampen [150] and summarized in [60]. The main
point is to compute the time evolution of the second moments of ψ and ψ̇, av-
eraged over the realizations of the stochastic process. In general, the solutions
of a stochastic oscillator equation as the one we are dealing with, are unsta-
ble. The envelope of an unstable solution exponentially grows in time with a
growth rate λ which—with the aid of Van Kampen’s method—is found to be

λ(Ω0, σΩ, τ) =
1
2

(
Λ− 4Ω0

3Λ

)
,

Λ =

⎛

⎝2σ2
Ωτ +

√(
4Ω0

3

)3

+ (2σ2
Ωτ)2

⎞

⎠
1/3

. (2.125)

The quantities Ω0 = 〈kR〉ΣE , σΩ = 〈δ2kR〉ΣE and τ can be computed as static,
i.e. microcanonical averages. Therefore (2.125) gives an analytic, though ap-
proximate, formula for the largest Lyapunov exponent independent of the
numerical integration of the dynamics and of the tangent dynamics.

An important remark is that this analytic formula for λ is derived under
the geometric assumption of quasi-isotropy of the mechanical manifolds (for
details see [60]), but this assumption is inadequate to tackle those systems
whose mechanical manifolds are topologically nontrivial, in this case the the-
ory has to take into account the role of an additional instability mechanism
originating in the neighborhoods of the critical points of the potential function.

2.5 Numerical Results: Relaxation to Equilibrium
from Low-Frequency Modes

2.5.1 Observations of Diffusion: Numerical Determination of λ

We have already discussed the early observations of periodicities among a few
low-frequency modes, at low energies, and their explanation in terms of beat
oscillations. We have also considered that solitons could be constructed from
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low-frequency mode initial conditions, which also produce the observed beats,
i.e. another way of looking at the same phenomenon. Instability of single soli-
tons in the mKdV equations was found to occur, for a given FPU-β chain, at
about the same energy at which the interaction of the beat oscillations gener-
ates stochastic layers (the concept of resonance overlap), and at the instability
of an exact periodic solution. For large systems, at not too low energy, generic
initial conditions would be expected to lie in the stochastic portion of the
phase space and be able to diffuse to all portions of it by the Arnold diffusion
mechanism. A stochasticity threshold (ST), to observable positive Lyapunov
exponent, λ, and (possibly) an observable time to equipartition, Teq, would
be expected. In Sect. 2.3, we have discussed the numerical determination of
the statistical quantities λ and neff from which Teq (or some fraction of it)
is found. In the higher energy regime, these and other statistical measures
of the diffusion have been explored in the late 1970s and 1980s, particularly
from the group in Firenze (see [50, 51, 52, 123, 128, 151]) and in Milano (see
[25, 48, 49, 152, 153]). Here, and in Sect. 2.5.2, we present some of the numer-
ical results, which are then used to guide further analytic studies. We restrict
our numerical observations, in these sections, mainly to initial conditions of
energy in low-frequency modes. The numerics starting from high-frequency
modes have a somewhat different character, and will be treated separately in
Sect. 2.6. Before presenting the results using the statistical measure, we first
present in Fig. 2.9, a series of mode spectra, for R = 8, N = 32, above the Ec
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Fig. 2.9. Log of average energies at R = 8.0, N = 32 (E = 4) and four consecutive
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transition as found in Fig. 2.4. The increase in energy in some high-frequency
modes, specified from the selection rules, is well above the background, and
continues to increase with time, finally resulting in equipartition. Note that
the first frame in Fig. 2.9, with τ = 2000, corresponds to N = 32 at R = 8 in
Fig. 2.4. The time has been normalized to scale away the number of oscillators
in the chain. The values of neff , at each time, are listed in the figure caption.

The early statistical results, for the FPU-β chain with β chosen to be 0.1,
can be summed up with a graph from Pettini and Landolfi [50]. Choosing a
range of N from 64 to 512, and the initial cluster of low-frequency modes
Δk, with Δk/N fixed at 1/16, they numerically calculated λ(t) and η(t) (see
Sect. 2.3.2). To calculate for times that were not as long as Teq they fitted
η(t) to the stretched exponential

η(t) =
{

exp(−(t/τ)ν), t < τR,
exp(−(τR/τ)ν), t > τR

(2.126)

with τR taken as a measure of Teq. Their results for an asymptotic λ and for
τR are shown together in Fig. 2.10, for a particular N and Δk, but confirmed
for other values of N and Δk with Δk/N = const.. As shown in the figure,
the slopes are power laws in ε = E/N , with a transition in the slope of λ
from λ ∝ ε2 at low ε to λ ∝ ε2/3 at higher ε. They interpreted this transition
as that from weak to strong stochasticity (the SST). The weaker scaling at
higher ε was predicted from an assumption of a fully random process, which
might be expected to follow from strong mode overlap (see Sect. 2.8.1). We
note from (2.7) that the transition roughly coincides with the prediction of
mode overlap. Although not discussed in the original work, we also see the
scaling τR ∝ ε−3, a scaling later confirmed for Teq from extensive calculations
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Fig. 2.10. The relaxation time τR and the maximum Lyapunov exponent λ vs. the
energy per mode ε = E/N , for N = 128 and Δk = 4. Open circles and squares are
relaxation times, and closed circles are the Lyapunov exponents
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as presented in the following subsection. The λ-scaling has been placed on a
firm theoretical basis, as described in Sect. 2.4.7, with the theory compared
to numerics in Sect. 2.8.2. Pettini and coworkers [61] have made extensive
calculations of λ(ε), using various initial conditions, for FPU-α, FPU-β, and
for the combination of the two, as given in (2.1). The FPU-α chain was
particularly useful to explore a transition from power-law dependence of λ
on ε to a condition in which λ was not obtainable on computer accessible
time-scales, which they called the stochasticity transition (ST). Their inter-
pretation was that the ST gave a transition from essentially regular motion
to chaotic motion. However, numerical determinations of Teq for the FPU-β
chain, as reviewed in the next section, interprets the more rapid increase of
Teq with decreasing ε as a transition from power-law Teq ∝ ε−q to exponential
Teq ∝ exp(−aεb) variation of Teq with ε, as predicted by the Arnold diffusion
mechanism (see [55, 57, 58, 65, 121, 134]). We return to this unresolved ques-
tion of whether or not there is a transition at small ε to regular motion (no
diffusion) after presenting the numerics here and in the next subsection.

The type of initial conditions typically used for the FPU-α system are
one or a few modes, for which both short-time and long-time dynamics are
observed. In Fig. 2.11 from Casetti et al. [61], we present values of λ(ε) on
log–log scales for three values of N = 32 (squares), 64 (triangles) and 128
(circles), starting from energy initially in the longest wavelength mode. The
dominant scaling of λ ∝ ε5/3 is significantly weaker than the FPU-β of λ ∝ ε2.
At low values of ε there is a clear drop-off to smaller values of λ with a
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Fig. 2.11. Lyapunov vs. ε. Long-wavelength initial condition
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weak N -dependence, such that the drop-off occurs at larger ε for smaller N .
The results are slightly confused by an apparent resonant dip in λ occurring
near ε = 10−2. Another way of choosing initial conditions for measuring λ
is random over oscillators, which is also random over modes. This places the
initial coordinates near equipartition to begin with, and therefore, should ap-
proximate the long-time average more rapidly. The results, shown in Fig. 2.12,
include two small N -values,N = 8 and 16, which cannot be compared directly
with the previous figure, and may also include some “small-N” effects. For
the cases of N = 32 (stars), and 64 (square stars), in the power-law regime,
the same scaling λ ∝ ε5/3 is found, agreeing with the previous figure. Again,
just considering the highest two N -values, the drop-off to significantly smaller
λs have a scaling of εcN2 ≈ const. (or EcN ≈ const.), where εc is the approx-
imate break from the main scaling. This separation by N -value is much larger
than in the previous figure. We note parenthetically that the scaling of this
transition is the same as found for overlap of resonances in the FPU-β sys-
tem described in Sect. 2.4.1. We discuss these results further after obtaining
numerical values of Teq in the following Subsection.

2.5.2 Numerical Determination of Teq Scaling with ε

Considerable numerical effort has gone into the determination of the scaling of
Teq for the FPU-β system and comparisons with systems with other force laws.
For the FPU-β, Deluca et al. [55, 57, 58], showed for a fixed ε = E/N = 0.5,
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Fig. 2.12. Lyapunov vs. ε. Random initial condition
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over a range of relatively large N -values, N = 256 − 4096, with a fixed per-
centage of initial modes, δk/N = 1/16, that neff(t) fell on a universal curve,
i.e. was independent of N , and therefore of E. For these relatively large N -
values a previous weak dependence on N with δk held constant, was partly
resolved by showing that neff(t) has an initial transient, which mostly disap-
pears for larger values of neff . This is a reasonable consequence of phase space
ergodic mixing. With smaller values of N investigated in other studies, there
are significant weak N -dependences in the time to obtain equipartition. The
universal dependence of neff on ε−3 is illustrated in Fig. 2.13, where the time
is normalized to τ = (βε)3t. Since the times to equipartition become very
long as ε becomes small, only the largest values of ε were integrated to Teq at
neff = 0.65. Because of the universal nature of the result shown in Fig. 2.13,
the scaling of Teq with ε should also be obtainable from a smaller value of
neff , say neff = 0.4. This was done, finding t(neff = 0.4) ∝ ε−3, but with
some suggestion of steeper scaling at the smallest ε, interpreted in subsequent
longer integrations neff = 0.65 as a breakdown of power-law scaling if the
initial driving frequency becomes too small [65]. A heuristic calculation of the
observed scaling was given in [58], which we will summarize in Sect. 2.8.3.
The results of DeLuca et al. [58] were reexamined by Berchialla et al. [59] for
N = 511, again for t(neff = 0.4), obtaining ε−3 scaling with ε in the same ε
range as previously, but extended to smaller ε-values where steeper scaling was
observed. In addition to the log–log plot, giving the t ∝ ε−3 scaling over part
of the ε range, a best-fit stretched-exponential dependence, t ∝ exp(ε−1/4),
was also plotted showing a good fit to the smaller values of ε, as shown in
Fig. 2.14, with the vertical dashed lines indicating the range of the data from
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the DeLuca et al. [58] paper. (The values for ε > 1 are considered to be above
the SST and not of interest in the comparison). These results will be dis-
cussed further, after presenting additional data from other oscillator chains.
An early comparison of the FPU-β chain with the φ4 chain was made by
Pettini and Cerruti-Sola [64]. Both oscillator chains have quartic nonlinear
potentials, but the φ4 quartic term is on-site, while the FPU-β quartic term
is between oscillators. As already discussed in Sect. 2.2, the FPU-β chain is
simpler and easier to analyze. The early numerical comparison of the chains
covered long-wavelength (low-frequency), short-wavelength (high-frequency)
and intermediate-wavelength initial conditions. The recent theory, elucidat-
ing the more complex behavior, starting from high frequencies, had not been
developed, but some general observations could be made. For long-wavelength
initial conditions, at a given ε, the time to equipartition was shorter for the φ4

system than for the FPU-β system. The opposite held at short wavelengths
with Teq shorter for the FPU-β than the φ4 system. It generally took longer
to reach equipartition from short-wavelengths at a given ε. We have already
discussed reasons for the different behavior and some short-time results in
Sect. 2.4.1. Numerical results for short wavelengths will be given in Sect. 2.5.
Here we present the detailed long-wavelength comparison as given in [65]. In
Fig. 2.15 we compare the scaling of Teq(ε) for the FPU-β and φ4 chains, each
for two values of N . The nonlinear coefficient is β = 0.1 for both chains, and
m = 0.1 for the φ4 chain. Except for the FPU-β chain with N = 500 (or 512),
the other cases used Δk/N = 1/16, as with the numerical results presented
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Fig. 2.15. Comparison of equipartition times for the FPU-β [N = 128 (crosses),
N = 512 (triangles)) and the φ4 model (m = 0.1, N = 64 (squares), N = 128
(stars)]. The φ4 data with plusses are taken from [64]

in previous figures. For the N = 500, 512 data, some Δk/N = 1/16 initial
conditions and some Δk = 8 (Δk/N = 1/64) initial conditions were used. In
all cases, the initial conditions used the lowest modes, equally excited. [For
the two pairs of FPU-β results, with large N , at ε = 0.5 and ε = 1, the lower
points used Δk/N = 1/16 (N = 512) while the upper points used Δk = 8
(N = 500).] However, although there is some initial Δk/N dependence, the
main reason for the separation was due to a statistical (and perhaps physical)
anomaly that sometimes occurs at higher N -values. The criterion for deter-
mining Teq was the first time neff(t) = 0.65. As discussed in Sect. 2.3.2 there
are fluctuations on short time-scales which lead to neff = 0.65 at equiparti-
tion, but these fluctuations also appear on the neff(t) curves. Usually, neff(t)
crosses 0.65 and then fluctuates around that value. In the two upper values
of Teq, discussed above, the first fluctuation occurred just below neff = 0.65,
such that the first actual crossing was significantly later in time. Returning
to discussion of the main results, the central portions of all curves display
power-law scaling, with FPU-β scaling giving Teq(FPU − β) ∝ ε−3. This is
also seen when t(neff = 0.4) is used to determine the scaling. The somewhat
flatter scaling at large ε is again interpreted as crossing the strong stochastic-
ity threshold (SST). For the φ4 chain the central portion of the ε-values gives
Teq(φ4) ∝ ε−2.5, slightly flatter than the FPU-β scaling. We will discuss this
difference, together with a heuristic calculation of the scaling in Sect. 2.8.3.
The Teq(ε) slopes become steeper at the lowest values of ε. For the φ4 chain,
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comparing the values of Teq for N = 64 (squares) with the values of N = 128
(stars), we see that for intermediate ε-values the two curves lie close together,
agreeing with the expectations that Teq is a function of ε, only, [58, 121], as
found in Sect. 2.8.3. However, at lower values of ε we see that the N = 64
points break away from the N = 128 values, producing larger values of Teq

with decreasing ε. This behavior was also found for the FPU system, and
understood in terms of a critical value of energy, Ec for which the transition
occurs. If the value of Ec is the same for all N , as calculated in Sect. 2.4.1 for
the FPU system, then the value of εc at which the transition takes place would
vary inversely with N and therefore occur at a factor of 2 higher ε for N = 64
than for N = 128, as observed in the figure. The values of Teq for the FPU
chain for N = 128 (crosses) and N = 512 and 500 (triangles), would have the
equivalent break at higher values of Teq, which were not numerically reached.
In Fig. 2.16, we plot Teq, on a log scale, vs. 1/ε, for N = 128 (stars) and for
N = 64 (squares). In the range in which the diffusion is exponentially slow
(Arnold diffusion), then from the exponential scaling with δωh/ΩB ∝ 1/E,
if (2.54) is not satisfied, we expect to obtain a straight line for log(Teq) vs.
1/ε if N is held constant. This is, indeed, found for 4 of the values, with a
transition between ε = 10−3 and 5×10−4, for N = 128, and between 2×10−3

and 10−3 for N = 64, indicating that the change in dependence occurs at a
fixed value of E = Ec.

Because of the additional on-site parameter m, the numerical investigation
of the φ4 chain involves a larger parameter space than the FPU chain. We can
see from the linear mode frequencies, given in Sect. 2.2.2, that for m� 1/N ,
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Fig. 2.16. Equipartition time for the FPU-β model in the exponentially slow dif-
fusion regime
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the mode frequencies bunch together for long-wavelength modes, similar to
high-frequency bunching. The result, starting from long-wavelength initial
conditions, similar to what we shall see for both FPU-β and φ4 at short
wavelengths, is that there is trapping in a group of closely coupled modes
that leads to a plateau in neff , before the continuation toward equipartion.
We illustrate the plateau in Fig. 2.17, calculating both neff and nosc, for typical
parameters with m = 1 and Δk/N = 1/16. The energy is distributed among
many oscillators, and a plateau at neff ≈ 0.2 exists for a long time before
the rise to the equilibrium value of neff = 0.65. The neff plateau is similar
to an effect seen for initial conditions in short wavelengths as in Fig. 2.23.
However, the physics is quite different at short wavelengths, where the energy
concentrates into a few oscillators, which can be seen by comparing the nosc(t)
plots in Figs. 2.17 and 2.23. In Fig. 2.18 we scale Teq to the best fit of ε/m2.75

which we will discuss in Sect. 2.8.3.

2.6 Numerical Results: Relaxation to Equilibrium
from High-Frequency Modes

2.6.1 Dynamical Studies of Self-Organization into Chaotic
Breathers and Their Interaction

In a systematic study of chaotic breathers (CBs) in a FPU oscillator chain
with periodic boundaries, starting from the boundary mode, that has 180
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phase shift between neighboring oscillators, Cretegny et al. [87] illustrated
the dynamics with a three-dimensional presentation first used by Burlakov
and Kiselev [83]. The result shown in Fig. 2.19a, with accompanying explana-
tory figures, shows on a gray intensity scale, the CBs emerging from the fastest
growing mode, moving spatially and interacting with one another, with the
larger CBs absorbing the smaller ones, until only a single moving CB re-
mains. Figure 2.19b, c illustrate this with time snapshots. Finally there is a
longer time period in which the CB can continue to grow by taking energy
from background modes with similar symmetry, but ultimately decaying to
an equipartition state, as seen in Fig. 2.19d. For this study an intermediate
value of ε 
 0.35 was used. This result is quantified with statistical measures,
which we save for the following section.

As already described in Sect. 2.4.6, it is not necessary to start from the
π-mode to obtain results of this nature. In fact, for fixed boundaries there is
no exact π-mode. More generic initial conditions with fixed boundaries were
used by Ullmann et al. (2000), obtaining results very similar to Fig. 2.19. For
example for N = 128, choosing γ = 120, n = N + 1 − γ = 9 initial peaks,
a result close to Fig. 2.19a was obtained, except that there is a competition
between the initially fixed number of peaks and the wavenumber of the fastest
growing mode. This roughly led to the result that, even for energies for which
nm ≡ Nkm/2π < 9 the number of initial CBs nB ≥ 9. They also explored a
wide range of initial conditions, finding with N = 128, that proto-breathers
began to form for γ >∼ 80, and became fully formed CBs for γ >∼ 100. They
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used a particular value of E = 50 (ε = 0.39). This latter result was obtained
by direct observation of the spectrum, and also by the use of macroscopic
quantities, as described in the next subsection.

Various numerics of CB formation and decay were repeated in papers
employing the analytic methods using envelope functions, in order to compare
analytic formulae with numerical results. For example, for the FPU chain the
logarithmic rate of decay of the number of CBs 1/τ ≡ n−1

B (dnB/dt) was
constant at fixed energy, indicating that the time-scale for coalescence

τB ∼ (nBσBvB)−1 (2.127)
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with τB ∝ τ , preserved the constancy of the product CB density×CB inter-
action cross-section×CB velocity during the coalescence [92]. At lower initial
energies, for the FPU chain, τB ∝ E−2 [91], while at higher energies τB ∝ E−1

[88]. These scalings are understood, and the underlying theory will be outlined
in Sect. 2.9.

The dynamics of the φ4 chain has some significant differences from the
FPU dynamics. Nevertheless, the overall features have much in common. For
example, for the lowest mode of the envelope, n = 1 (γ = 128), the devel-
opment of the parametric instability is quite similar for the φ4 and FPU,
provided the φ4 energy is a factor of 16 higher to account for the factor of
16 in the nonlinear term, with E ∝ ψm in the energy range considered. The
initial nonuniform growth of the instability is shown in the time snapshots in
Fig. 2.20, and the coalescence shown in four time snapshots in Fig. 2.21.

By scaling either the energy or the time, the early development of the
instability can be obtained reasonably close to that in Fig. 2.20. Similarly, the
nearly complete coalescence into a single CB in Fig. 2.21d at t = 5000, can be
roughly compared with the localized state at t = 2000 from the observation
of a residual second breather seen in Fig. 2.19a, and at t = 3000 in Fig. 2.19c.
Note that the faster evolution times in the FPU example reflect reasonably
well the effective higher energy.

2.6.2 Transitions and Time-Scales to Equipartition

To systematically study the transitions and time-scales for the creation of
breathers, their coalescence, and their destruction leading to equipartition,
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Fig. 2.20. Development of the fastest growing mode from the initial mode γ =
128 (n = 1) for the φ4 model
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Fig. 2.21. Coalescence of a few chaotic breathers into primarily a single breather
fot the φ4 chain: a t = 300, b t = 1200, c t = 4000, and d t = 5000

macroscopic quantities are most useful. We have introduced these macroscopic
quantities in Sect. 2.3.2 and used them to study the evolution from long-
wavelength modes to equipartition in Sect. 2.5.2. For long-wavelength initial
conditions the quantity neff is most useful, while nosc gives little additional
information. In contrast, for short-wavelength initial conditions, in which the
intermediate CB state occurs, nosc is the most useful macroscopic indicator
but neff also serves a useful function; other macroscopic indicators can also be
used. In Fig. 2.22a we plot the evolution of nosc(t) during the evolution, using
a linear time-scale, beginning after the multiple CBs have formed through
their coalescence time of about t 
 2 × 104, and then through a longer time
interval to approximately t 
 2.5×105. Finally, an approximate equipartition
is reached at Teq ∼ 5×105, as the breather disintegrates, between t = 2.5×105

and t = 5× 105. It is quite difficult to extract a definite Teq from nosc, which
is most useful for describing the evolution of the CB states. We also present
the results for neff on a linear time-scale, but over twice the time period, in
Fig. 2.22b, observing that Teq 
 106. The approximate numerical asymptotes
are slightly lower than the theoretical values, given in Sect. 2.3.2, which are
nosc = 0.74 and neff = 0.655.

The overall time dependence is better seen on a scale which is logarithmic
in time. We illustrate the full time dependence for the φ4 oscillator chain, in
Fig. 2.23, starting from the same initial conditions as in Figs. 2.20 and 2.21.
We note here that the asymptotes correspond more closely to the theoretical
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values. Again, most of the relevant information is contained in nosc(t). The
logarithmic dependence of the time-dynamics is seen by estimating that the
instability growth is in the range 30 <∼ t <∼ 300, the breather formation and
coalescence between 300 <∼ t <∼ 3×103, and the single breather exists between
3 × 103 <∼ t <∼ 3 × 104. In the final decade the breather is destroyed, leading
to equipartition.

The scalings for short-wavelength initial conditions in the regions of lower
and higher energy density ε can be obtained similarly to that in Sect. 2.5.2
for long-wavelength initial conditions. As for long wavelengths there is a tran-
sition between two distinct regions of power-law scaling with energy density
ε , the lower energy region which has steeper ε-scaling, and the higher en-
ergy region with flatter ε-scaling. Returning to the numerics of the FPU, in
Fig. 2.24 we plot neff vs. normalized time for a series of values of ε, show-
ing that in the lower energy regime 0.33 ≤ ε ≤ 1.44 in Fig. 2.24a, the data
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Fig. 2.23. Time dependence of (a) neff and (b) nosc for the φ4 chain. The initial
energy density is ε = 2 and γ = 128 (n = 1)

collapses onto a single curve using ε−2 as a normalizing factor. At very high
values of ε, 103 ≤ ε ≤ 106 the dynamics has become purely random over the
mode space, and the weak normalizing factor ε−1/4 is observed (Fig. 2.24b).
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(resp. t (E/N)1/4) is reported for different energy densities. Each curve in (a) [resp.
b] corresponds to the average over 20 (resp. 50) different initial conditions for a chain
with N = 512 sites. The dot-dashed line reported in (b) indicates the asymptotic
value neff � 0.655
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Fig. 2.25. Comparison of the equipartition time for the FPU and the φ4 lattice

The lower ε scaling, starting from short wave-lengths, is different from the
ε−3 scaling obtained in Sect. 2.5.2 from long wave-lengths. Estimates for the
scalings, as well as values of Teq in the various regimes will be presented in
Sect. 2.9.2.

Finally, we compare in Fig. 2.25 the times to equipartition, for a few dis-
tinct initial conditions of the FPU and φ4 chains at relatively low values of ε,
with N = 128. All values of Teq were taken at the first crossing (or touching)
of neff = 0.65. The slopes become steeper, for both chains and all initial con-
ditions, at the lowest values of ε. This may be associated with the transition
to exponential scaling, as previously discussed for low-frequency initial con-
ditions. We also see the basic separation of a factor of 4 in ε at a given Teq,
between the FPU and φ4 results, due to the difference in the nonlinear forces.
There are also more subtle differences, discussed in the original paper [94].

2.7 Numerical Results: Stationary Nonequilibrium
Properties

2.7.1 Numerical Studies of the Divergence of Heat Conductivity

As a result of a number of studies of the heat conductivity in FPU and di-
atomic Toda models the conductivity of long but finite chains diverges as

κ(N) ∝ Nα . (2.128)

In Table 2.1, we compare the available estimates of the exponent α determined
by different authors in various models and conditions. The acronym NEMD
refers to nonequilibrium molecular dynamics simulations, where the chain is
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in contact at its boundaries with thermal baths at different temperatures. The
heat conductivity is estimated by (2.10). The acronym GK indicates equilib-
rium simulations, where the chain is at equilibrium and the heat conductivity
is computed by the Green–Kubo formula: for an isotropic homogeneous solid
made of atoms placed on a regular cubic lattice of volume V in d dimensions,
the thermal conductivity κ is expressed as a scalar quantity (see [154])

κ =
1

kBT 2d
lim
t→∞

∫ t

0

dτ lim
V→∞

V −1〈J(τ) · J(0)〉 , (2.129)

where kB is the Boltzmann constant; T , the temperature of the solid; 〈 〉, the
equilibrium average; and J is the heat current vector.

This formula applies when the integral on the r.h.s. is finite. In a chain
of atoms, J is a scalar quantity and a divergent heat conductivity can be
signalled by the slow decay in time of the heat current autocorrelation function
〈J(t)J(0)〉 ∼ t−β with β < 1. In fact, the integral in (2.129) diverges. In
finite chains one expects that an exponential decay eventually sets in, so that
simulations should be performed for different chain lengths in order to be sure
to pick up the truly asymptotic scaling behavior.

A quantitative comparison with the nonequilibrium measurements, based
on the Fourier law (2.10), can be performed by noticing that energy propagates
with the constant sound velocity vs. This can be understood by, for example
looking at the spatio-temporal correlation function C(i, t) = 〈ji(t)j0(0)〉 of
the local heat flux plotted in Fig. 2.26 (see [114]). Accordingly, one can turn
the time divergence of κ as determined from the Green–Kubo formula into
a divergence with N by restricting the integral in formula (2.129) to times
smaller than the “transit time” Na/vs. This amounts to ignoring all the con-
tributions from sites at a distance larger than N . With the above estimate
of C, one obtains that κ ∝ N1−β , i.e. α = 1 − β. The latter exponent is the
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Fig. 2.26. The spatio-temporal correlation function C(i, t) = 〈ji(t)j0(0)〉 of the
local flux for the FPU-β model. Microcanonical simulations, energy density 8.8
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Table 2.1. The estimated exponent α of divergence of the conductivity with size
N , as obtained from both nonequilibrium molecular dynamics (NEMD) simulations
and through Green–Kubo (GK) equilibrium studies. Only the significative digits are
reported as given in the quoted References

Model Reference α (NEMD) α (GK)

FPU-β [113, 114] 0.37 0.37
FPU-α [115] ∼ 0.4 –
Diatomic FPU r=2 [117] 0.43 compatible
Diatomic Toda r=2 [116] 0.35–0.37 0.35

[117] 0.39 compatible
Diatomic Toda r=8 [117] 0.44 compatible
Diatomic hard points [116] 0.35 –

one reported in the last column of Table 2.1. All numerical values there range
between 0.35 and 0.44, suggesting a nontrivial universal behavior. It is also
remarkable to notice the overall consistency among the results obtained with
different thermostat schemes (ranging from deterministic to stochastic ones).

In order to better appreciate the quality of the divergence rate that can
be numerically obtained, in Fig. 2.27 we have plotted the finite-length con-
ductivity κ(N) = JN/(T+ − T−) vs. the number of particles in the FPU-β

101
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102

102 103

103

102 103 104

0.2

αeff

0.4
κ(N )

N

N

Fig. 2.27. Thermal conductivity of the FPU-β model vs. lattice length N for T+ =
0.11, T− = 0.09. The inset shows the effective growth rate αeff versus N . Circles
and diamonds correspond to free and fixed b.c., respectively
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model for fixed and free boundary conditions. In the inset, one can see that
the effective growth rate αeff , which corresponds to the logarithmic derivative
of κ(N), is basically the same in both cases, despite the clear differences in
the actual values of the flux itself. The value of αeff seems to be quite close
to 0.4, a value which has been predicted by different theoretical approaches
(e.g., see [113]).

Once the divergence is clearly established, the next question concerns the
universality of the divergence rate. The discussion of this point involves con-
sidering a possible dependence on the temperature as well as on the leading
nonlinearities [115]. Both questions are addressed in Fig. 2.28, where κ(N) is
computed in the FPU-α model at a relatively low temperature.

One can see that changes in the temperature gradient, without modify-
ing the average T = (T+ + T−)/2, modify the effective conductivity only
at relatively small sizes. Moreover, the two sets of measures corresponding to
ΔT = 0.1 and 0.02 (triangles and circles, respectively) approach each other for
N larger than 103. In both cases κ(N) increases linearly with N for N < 103

and no sizeable temperature gradient forms along the chain. Both facts hint
at a weakness of anharmonic effects up to this time/length scales. This is con-
firmed by the comparison with the results for a pure harmonic chain (with the
same setup and same parameters) that exhibit a clean linear growth of κ with
N (see the solid line in Fig. 2.28) and a few-percent differences in the initial
size range. The fact that κ is smaller for larger ΔT can be thus attributed to a
stronger boundary scattering that reduces the conductivity. From the inset of
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103 104
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Fig. 2.28. Thermal conductivity of the FPU-α model vs. lattice length N. Triangles
and circles refer to ΔT = 0.1 and ΔT = 0.02, respectively. The solid line corresponds
to the linear divergence observed in a harmonic chain with the same temperatures.
The inset shows the effective divergence rate αeff vs. N for the data corresponding
to full circles
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Fig. 2.28, one can only conclude that for chain sizes up to O(104) the exponent
α seems to approach the value 0.4, although nothing prevents the possibility
that it converges to a larger value. In particular, there is evidence that the
scaling properties of κ(N) in the FPU-α model exhibit much different features
with respect to the FPU-β model, at least in the explored range of temper-
atures and sizes. Recent theoretical estimates based on the mode-coupling
approach, indicate that, as a matter of symmetry, heat conductivity in the
FPU-α and -β models should diverge with different values of the exponent
in (2.128). Moreover, these values are supposed to represent the two univer-
sality classes characterizing the power-law divergence of the heat conductivity
for any FPU-like model (including more phenomenological nearest-neighbor
potentials, like the Lennard-Jones ones). It must be pointed out that such a
theoretical prediction is very difficult to be checked numerically. Typically, fi-
nite size/time effects, as those observed in the FPU-α model, are found to last
over extremely long integration times and for very large system sizes which
do not allow one to confirm or disprove the theoretical expectations. Anyway,
a power-law divergence of the heat transport coefficient is always present in
such a class of models, although in finite systems the value of the exponent α
varies significantly with temperature and size. It is worth mentioning that this
could be a relevant point for what concerns possible comparison with experi-
ments, performed on almost-one-dimensional systems, like carbon nanotubes
or polymers.

Finally, we want to discuss the role of the boundary resistance in connec-
tion with the temperature dependence of conductivity. In fact, an interesting
application of (2.128) has been proposed with reference to the FPU-β model
[155]. There, it has been empirically found that the bulk conductivity scales
with N and T as

κ 

{

1.2NαT−1 (T ∼ 0.1)
2NαT 1/4 (T > 50)

. (2.130)

According to kinetic theory, the conductivity can also be expressed as κ =

vsCv, where 
 is the mean free path of phonons. Since Cv and vs are almost
constant and of order 1 in a wide temperature range, 
 ∼ κ. Hence, at low
temperatures the boundary jumps dominate the thermal profile up to the size
N∗ that can be estimated according to (2.130). At low temperatures this effect
is very strong with N∗ ∼ (2ε/T )(1/1−α), while smaller boundary resistances
are found at large temperatures, with N∗ ∼ (2εT 1/4)(1/1−α), where ε is the
energy density.

2.7.2 Force Laws That Predict Classical Heat
Conductivity:Coupled-Rotors, Ding–a–Ling and Klein–Gordon
Chains

A simple example of a classical-spin one-dimensional model with nearest
neighbor interactions has a potential
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V (x) = 1− cosx , (2.131)

i.e. is a chain of N coupled pendula. It has been extensively studied [151, 153,
156] as an example of a chaotic dynamical system that becomes integrable
both in the low- and high-energy limits, when it reduces to a harmonic chain
and to free rotors, respectively. In the two integrable limits, the relaxation to
equilibrium slows down very rapidly for most of the observables of thermody-
namic interest (e.g., the specific heat: see [151, 156]). As a consequence, the
equivalence between ensemble and time averages is established over accessible
time-scales only inside a limited interval of the energy density ε. Here, we
focus our attention mainly on heat conduction in the strongly chaotic regime.

It has been shown that, contrary to the expectations, this model exhibits
a finite conductivity in spite of the existence of an acoustic branch in its
spectrum in the harmonic limit [157, 159]. Simulations have been performed
for T+ = 0.55, T− = 0.35, and chain lengths ranging fromN = 32 to 1024 with
fixed boundary conditions and Nosé–Hoover thermostats [157]. The equations
of motion have been integrated with a fourth order Runge–Kutta algorithm
and a time step Δt = 0.01. The results, reported in Fig. 2.29 clearly reveal
a convergence to a value of κ approximately equal to 7 (see the circles). The
dotted line is the best fit with the function a+ b/N and indicates a constant
κ for N → ∞. This is the first system where normal heat conduction was
convincingly ascertained in the absence of a local potential and was confirmed
by calculating an exponential decay of heat flux correlation appearing in the
Green–Kubo formula (2.129).
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Fig. 2.29. Conductivity κ vs. chain length N as obtained from nonequilibrium
molecular dynamics. Circles correspond to the rotator model with temperatures
T+ = 0.55 and T− = 0.35. The dashed line represents the best fit with the function
a + b/N . The shaded region represents the uncertainty about the conductivity on
the basis of the Green–Kubo formula
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One explanation of the striking difference in the transport behavior exhib-
ited by the model compared to, for instance, the FPU models is to notice that
the pair potential V (qi+1−qi) possesses infinitely many equivalent valleys. As
long as (qi+1 − qi) remains confined to the same valley, there is no reason to
expect any qualitative difference with, for example, the FPU-β model. Phase
slips (jumps of the energy barrier), however, may very well act as localized
random kicks, that contribute to scattering of the low-frequency modes, thus
leading to a finite conductivity. In order to test the validity of this conjecture,
one can study the temperature dependence of κ for low temperatures when
jumps across barriers become increasingly rare. The data plotted in Fig. 2.30
indicate that the thermal conductivity behaves as κ ≈ exp(η/T ) with η ≈ 1.2.
The same scaling behavior is exhibited by the average escape time τ (see tri-
angles in Fig. 2.30) though with a different η ≈ 2. The latter behavior can
be explained by assuming that the phase slips are the results of activation
processes. Accordingly, the probability of their occurrence is proportional to
exp(−ΔV/T ), where ΔV is the barrier height to be overcome. The behavior
of τ is thus understood, once we notice that ΔV = 2. In the absence of phase
slips, the dependence of the conductivity on the length should be the same as
in FPU-β model, i.e. κ ≈ Nα, with α ≈ 0.4. In the presence of phase slips, it
is natural to expect that the conductivity is limited by the average distance N
between consecutive phase slips. Under the further assumption of a uniform
distribution of the slips, their spatial and temporal separation has to be of
the same order, thus implying that κ(T ) exhibits the same divergence as τ
for T → 0, though with a different rate κ ≈ exp[αΔV/T ]. Therefore, at least
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Fig. 2.30. Thermal conductivity κ vs. the inverse temperature 1/T in the rotor
model (open circles). Triangles correspond to the average time separation between
consecutive phase slips in the same system
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on a qualitative level, one can indirectly confirm that phase slips are respon-
sible for the normal heat transport. However, there is a discrepancy between
the observed and the expected value of the exponent η (1.2 vs. 0.8). We now
consider the class of models whose Hamiltonian contains a local “substrate”
potential U(qi). This means that translational invariance breaks down and
the total momentum is no longer a constant of the motion. Accordingly, the
dispersion relation is such that ω(k) �= 0 for k = 0.

The so-called “ding-a-ling” model was first introduced as a toy model for
a one-dimensional plasma [158]. It can refer in different contexts to : (i) a
set of identical charge-sheets embedded in a fixed neutralizing background;
(ii) a system of harmonic oscillators with the same frequency and equilibrium
positions sitting on a periodic lattice and undergoing elastic collisions that
exchange their velocities. Notice that in the low-energy limit, it reduces to a
set of independent harmonic oscillators with equal frequency (no dispersion).
A modified version of this model, where the harmonic oscillators (say the even-
numbered particles) alternate with free particles of the same (unit) mass, was
later introduced for studying heat transport [119]. The free particles are only
constrained to lie between the two adjacent oscillators. The Hamiltonian can
be symbolically written as

H =
1
2

N∑

l

[
p2
l + ω2

l q
2
l

]
+ “hard point core” , (2.132)

where ωl = ω for even l and zero otherwise. A common feature of this class
of models is that within collisions the motion of the particles can be deter-
mined analytically so that the basic requirement is the computation of the
occurrence times of the collision events. Therefore, the dynamics naturally
reduces to a discrete mapping. For an isolated system (e.g., a chain with pe-
riodic boundary conditions) the dynamics depends only on the dimensionless
parameter ε/(ω a)2 where ε is the energy per particle and a the lattice spac-
ing. The dynamical behavior of the model was studied by fixing ε = 1 and
changing ω [119]. When ω and N were large enough the dynamics was found
to be strongly chaotic and soliton-like pulses are sufficiently attenuated [160].
This renders the model a good candidate to check the validity of Fourier’s law.

The Fourier law was first confirmed with the performance of a series of
non-equilibrium simulations, where the freely moving end-particles were put
in contact with two Maxwellian reservoirs. The average flux J was then com-
puted by summing the amounts of energy δE exchanged with one of the
reservoirs in all collisions during the simulation time. The average tempera-
ture gradient was estimated with a linear fit (to get rid of boundary effects).
By evaluating the thermal conductivity as a function of the lattice length up
to N = 18 for T+ = 2.5, T− = 1.5 and ω = 1, it was concluded that κ(N)
attains a constant limiting value for N > 10 (see Fig. 2.31). After having es-
tablished the existence of a finite value of the transport coefficient, the value
of κ was compared with the result of linear response theory, using a Green–
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Fig. 2.31. Thermal conductivity of the ding-a-ling model. Size dependence of κ for
ω = 1 and ε = 1.5 (from [162]). In the inset an expanded view is presented in the
range of sizes considered in [119]

Kubo formula (see [161]). In summary, all these studies provided a convincing
numerical evidence that the heat conductivity is finite in this model. In par-
ticular, it was shown that the energy transport is diffusive for large values of
ω (typically, larger than 10), while the linear response estimate was found to
agree with numerical simulations. Much later, these results were essentially
confirmed by a detailed series of simulations with longer chains and in a wider
parameter range of the “ding-a-ling” model [162]. However, the temperature
profile exhibits a nonlinear shape (see Fig. 2.32) different from the typical
linear temperature profile predicted by the Fourier law.

Careful numerical studies performed on the original Dawson model [161]
have confirmed the validity of Fourier’s law in a wide temperature range. Be-
sides direct nonequilibrium simulations with Maxwellian thermostats and the
Green–Kubo formula, these studies implemented an efficient transient method
that allowed them to explore the high-temperature regime (T > 3), where,
because of the nearly integrable dynamics, a slow convergence of the averages
with time and/or size is observed. In the low-temperature limit (T < 0.1) it
was also proved that the heat conductivity vanishes as exp(−1/4T ), in agree-
ment with numerical results. Numerical evidence of finite thermal conductivity
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Fig. 2.32. Temperature profile for the ding-a-ling model, ω = 2 (see [163])
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was also found in a modified ding–a–ling model where the harmonic potential
is replaced by a gravitational one [163].

The Klein–Gordon lattices are another important class of models with a
substrate potential, where the interparticle potential is harmonic:

H =
N∑

l=1

[
pl
2m

2
+ U(ql) +

1
2
C(ql+1 − ql)2

]
. (2.133)

The first and most complete study of the transport problem in this class of
models has been carried out for the Frenkel–Kontorova potential [164].

U(x) = −U0 cos
(

2πx
a

)
. (2.134)

The model can be interpreted as a chain of either coupled particles in an
external periodic field or torsion pendula subject to gravity. In the latter case
a = 2π and ql represents the angle with respect to the vertical direction: it
can be read as the discretized (and nonintegrable) version of the well-known
sine-Gordon field equation.

Besides energy, the dynamics admits a further conserved quantity, the
winding number P , which is an integer defined by the boundary condition
ql+N = ql + aP . In the particle interpretation, P represents the number of
potential wells, while for the pendula it can be viewed as the degree of built-in
twist in the system. Thermal conductivity was computed numerically in the
general case of nonvanishing winding number, with three different methods: (i)
attaching two heat baths; (ii) through the Green–Kubo formula; (iii) by adding
an external field . All the methods give consistent results and clearly indicate
that the thermal conductivity is finite. These results were later confirmed
by further numerical studies [165], which investigated the dependence of the
transport coefficient on the lattice length (for P = 0). Similar conclusions
were drawn for a more general version of the Frenkel–Kontorova model with
an anharmonic inter-site potential [166].

In order to illustrate the type of behavior observed in this class of models
Fig. 2.33 shows some data for the φ4 chain

U(x) =
a

2
x2 +

b

4
x4 . (2.135)

In panel (a), we present a case of fast convergence to a small κ value for
a single-well potential; panel (b) refers instead to a low-temperature regime
characterized by large thermal conductivity.

Evidence of a finite conductivity for the case a = 0 has been reported in
[167, 168]. Two further examples were analyzed, the sine-Gordon and bounded
single-well potentials:

U(x) = coshx − 1 , U(x) =
1
2
(
1− sech2x

)
(2.136)

representatives of the classes of hard and soft anharmonicity, respectively. In
both cases there is numerical evidence for finite thermal conductivity [169].
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Fig. 2.33. Thermal conductivity vs. chain length in φ4 chains with Nosé–Hoover
thermostats. Panel a refers to the single well case [a = b = 1 in (2.135)] the results
have been obtained for C = 1, T+ = 8, and T− = 6. The shaded region represents
the value obtained from the Green–Kubo formula with its statistical uncertainty.
Panel b refers to the double-well case (a = −1, b = 1) for an average temperature
T = 0.37 and a temperature difference 0.002. The dashed line is just a guide for
the eyes

2.8 Analytical Calculations and Estimates: Scaling
Estimates for λ and for Teq from Low Frequencies

2.8.1 Random Matrix Approximation in the Strong Mode Overlap
Regime

The numerical computation of the energy density (ε = E/N) scaling of the
largest Lyapunov exponent for the FPU-β model has put in evidence the
existence of a crossover between two scaling laws: λ(ε) ∝ ε2 at low-energy
density, and λ(ε) ∝ ε2/3 at larger ε values [60], reaching on an asymptotic
value at large energy of λ ∝ ε1/4.

This transition has been called [64] the Strong Stochasticity Threshold
(SST), and it has been ascribed to the (smooth) transition between a regime
of weak chaos and a regime of strong chaos. Even if the system is prepared
far from energy equipartition, corresponding to the crossover energy density
εc there is a transition between slow and fast relaxation to equipartition;
the relaxation time approximately constant for energy densities greater than
εc, but steeply growing with decreasing the energy density below this value.
Although the relaxation phenomenology depends on the details of the initial
conditions, they always group into two families separated by εc. For example,
below εc the initial excitation of high-frequency normal modes results in a
slower relaxation to equipartition with respect to the initial excitation of low-
frequency modes, but this situation is reversed above εc [64]. We can estimate
the ε-scaling of λ to a transition from weak to strong chaos from a random
matrix approximation (RMA) for the tangent dynamics, which approximately
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accounts for the high-energy scaling of λ, whereas the extrapolation of such
a scaling law to lower energy increasingly overestimates the actual values of
λ [53, 64].

The RMA assumes the absence of correlations: for a flow this can be as-
sumed if the sampling time is not too short and if the dynamics itself mimics a
true random process. It then appears reasonable to consider as strongly chaotic
the dynamical regime where the RMA accounts for the λ(ε) scaling and to
consider weakly chaotic the dynamical regime where the RMA largely over-
estimates λ(ε). In [53, 64] it has been suggested that in the strongly chaotic
regime phase space diffusion occurs across resonances (and is therefore a fast
diffusion entailing a fast mixing) thanks to the coalescence of the stochas-
tic layers, generated near the resonant surfaces. At variance, below the SST,
the widths of the stochastic layers could be such that the resonance overlap
ceases—or is considerably reduced—so that phase space diffusion should be
constrained to occur along tortuous paths, along resonances, in a definitely less
efficient fashion; this qualitative picture has been given an interesting quan-
titative confirmation in [170]. Here the relaxation times of the weakly chaotic
regime measured in [53] have been analytically estimated with a very good
accuracy by means of a theoretical approach closely resembling the so-called
quasi-linear theory of diffusion in plasma physics, a theory of slow diffusion
applicable when chaos is not fully developed.

The numerical integration of a Hamiltonian flow consists in recursively
computing the symplectic coordinate transformation [qi(t), pi(t)] → [qi(t +
τ), pi(t+ τ)]

qi(t+ τ) = qi(t) + τpi(t)
pi(t+ τ) = pi(t) + τFi[q(t+ τ)] (2.137)

where Fi = −∂V (q)/∂qi are the forces and q = (q1, . . . , qN). The Jacobian
matrix

J(Ω) =
(

1I τ1I
τΩ 1I + τ2Ω

)
(2.138)

of the discretized flow is symplectic, i.e

JT E J = E

where

E =
(

0 1I
−1I 0

)
.

Here 1I is the N × N identity matrix and Ω is the Hessian of the potential
part of the Hamiltonian: Ωij = −∂2V (q)/∂qi∂qj and τ is a discretization time
(for instance the time integration step). J is a 2N × 2N symplectic matrix
which maps a vector ξ(t) tangent to the flow at time t into a vector ξ(t+ τ),
that is: ξ(t+ τ) = J(t)ξ(t). Using Oseledec’s multiplicative theorem [171], an
approximation of λ is given by
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λ = lim
n→∞

1
nτ

ln

〈⎡

⎣
ξT(0)

[∏n
j=1 J

T(q(jτ))
]
·
[∏n

k=1 J(q(kτ))
]
ξ(0)

ξT(0) · ξ(0)

⎤

⎦
1/2〉

.

(2.139)
Now, if with a suitable time sampling the dynamics mimics a good random
process then both Ω and J can be considered as random matrices. For the
FPU-β model, the matrix Ω can be expressed as the sum of a tridiagonal
constant matrix Ω0 and of an implicitly time-dependent tridiagonal matrix
Ω̃. The matrix elements of Ω contain combinations of terms like (qi+1 − qi)2.
In the random matrix approximation, the hypothesis of δ-correlation in time
is made for the fluctuating part Ω̃ of Ω, i.e. 〈Ω̃ij(kτ) Ω̃ij(lτ)〉 = (γij/τ)δkl.
The average 〈·〉 in (2.139) is carried over different realizations of the random
matrix process. The theoretical computation of (2.139) yields [53]

λ ∼ τ2/3γ1/3, (2.140)

where γ is defined as

γ =
1
N

N∑

i=1

〈
[(qi±1 − qi)2 − 〈(qi±1 − qi)2〉]2

〉
. (2.141)

By computing a statistical ensemble average of γ(ε), one finds γ(ε) ∼ ε2

in an intermediate ε-range, as outlined below. Thus, from (2.140), λ ∼ ε2/3 if
ε is not too large and if τ is independent of ε. We remark that this result is
not asymptotic. The microcanonical measure should be used, but the canoni-
cal measure can equivalently work at large N . The canonical configurational
partition function

Z
(N)
C =

[
Γ

(
1
2

)(
ηβ

2

)−1/4

exp
(
α2η

8β

)
D−1/2

(
α

√
η

2β

)]N
,

where α is a dummy parameter multiplying the harmonic part of the FPU
potential, D−1/2 is a parabolic cylinder function, η = 1/T (kB = 1) is the
inverse of the average kinetic energy per particle which is, within a good
approximation, proportional to ε thus η 
 1/ε. The ensemble average 〈γ〉 is
then given by

〈γ〉 = Z−1
α=1

[
−4
η

(
∂Z

∂β

)

α=1

]
−
[
Z−1
α=1

(
−2
η

)(
∂Z

∂α

)

α=1

]2

,

and using the asymptotic approximation D−1/2(x) ∼ exp(−x2/4)x−1/2(1 −
3x2/8 + · · · ) that holds good at x� 0 one immediately gets

〈γ〉(ε) ∼ ε2.

At high ε, where the above expansion for D−1/2 worsens, the exponent 2 is
lowered and consequently also the 2/3 exponent of λ(ε) is lowered. In fact,
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the numerical results for λ(ε) and the analytic results worked out by means
of the geometric approach, outlined in Sect. 2.4.7 and applied to the FPU-β
model in Sect. 2.8.2, give at high ε the asymptotic scaling λ(ε) ∼ ε1/4.

In conclusion, the transition from the low-energy density scaling λ(ε) ∼ ε2

to the scaling λ(ε) ∼ ε2/3 is attributed to the transition from two different
regimes of chaoticity because the λ(ε) ∼ ε2/3 scaling is accounted for by the
RMA for the tangent dynamics at moderately high ε values.

2.8.2 Geometric Calculation of λ for FPU-β

A completely analytical computation of λ(ε) has been performed—in the
N → ∞ limit—for the FPU β-model using the geometric method sketched
in Sect. 2.4.7. As we shall see below, the agreement is strikingly good. Par-
ticularly noticeable is the fact that the analytic values of λ check with the
numerical ones within errors of few percent in a range of six orders of mag-
nitude both in ε and λ, with no adjustable parameters. The analysis follows
[60] and has been reviewed in [42].

The geometric quantities appearing in (2.125), that is Ω0 and σΩ, written
in the Eisenhart metric assume the simple form

Ω0 = 〈kR〉ΣE =
1
N
〈�V 〉ΣE , (2.142)

σ2
Ω = 〈δ2kR〉ΣE =

1
N

(
〈(�V )2〉ΣE − 〈�V 〉2ΣE

)
, (2.143)

where �V is the euclidean Laplacian of the potential function V (q).
Now, the microcanonical ensemble averages of KR(q) and of its variance

can be computed in terms of the corresponding quantities in the canonical
ensemble as follows. The canonical configurational partition function Z(η) is
given by

Z(η) =
∫

dq e−η V (q), (2.144)

where dq =
∏N
i=1 dqi. The canonical average 〈KR〉can of the Ricci curvature

KR follows as

〈KR〉can = [Z(η)]−1

∫
dq KR(q) e−ηV (q) . (2.145)

From this average, we can obtain the microcanonical average of KR, 〈KR〉ΣE ,
in the following (implicit) parametric form [172]

〈KR〉ΣE (η) = 〈KR〉can(η)

ε(η) =
1
2η
− 1
N

∂

∂η
[logZ(η)]

⎫
⎪⎬

⎪⎭
→ 〈KR〉ΣE (ε) (2.146)
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Note that (2.146) is strictly valid only in the thermodynamic limit; at finite
N , 〈KR〉ΣE (η) = 〈KR〉can(η) + O( 1

N ).
Contrary to the computation of 〈KR〉, which is insensitive to the choice

of the probability measure in the N → ∞ limit, computing the fluctuations
of KR, i.e., of 〈δ2KR〉 = 1

N 〈(KR − 〈KR〉)2〉, by means of the canonical or mi-
crocanonical ensembles yields different results. The relationship between the
canonical—i.e. computed with the Gibbsian weight e−βH—and the micro-
canonical fluctuations, is given by the Lebowitz–Percus–Verlet formula [172]

〈δ2KR〉ΣE (ε) = 〈δ2KR〉can(η) −
η2

cV

[
∂〈KR〉can(η)

∂η

]2

, (2.147)

where

cV = −η
2

N

∂〈H〉can
∂η

(2.148)

is the specific heat at constant volume and η = η(ε) is given in implicit form
by the second equation in (2.146).

For the FPU-β model, the Ricci curvature, written in the Eisenhart metric,
simply reads

KR = 2N + 6β
N∑

i=1

(qi+1 − qi)2 . (2.149)

Note that KR is always positive. By taking advantage of the analytically
known form of Z(η) for the one-dimensional FPU-β model, one can exactly
compute the analytic expressions of the microcanonical averages of (2.146)
and (2.147) in the N → ∞ limit. With Ω0 and σΩ one computes τ and,
substituting Ω0(ε), σΩ(ε), and τ(ε) into (2.125), we finally get λ(ε), which is
reported in Fig. 2.34. As anticipated at the beginning of the present Section,
the analytic values of λ are in excellent agreement with the numerical ones.

Other systems for which good results have been obtained are coupled ro-
tators [60], as shown in Fig. 2.35, classical XY Heisenberg models [173], ϕ4

models [141, 174], and the “mean-field” XY model [175], although some ad-
justments are necessary in these cases, mainly related with the nontrivial
topology of the mechanical manifolds.

2.8.3 Estimates of Time to Equipartition with Strong Arnold
Diffusion

In the energy regime in which the diffusion from a chaotic low-frequency
driving resonance can efficiently couple to a high-frequency resonance, i.e.
when the ratio of the driving to the driven frequencies ωB/δωh ∼ 1, an analytic
estimate of the equipartition time can be made [58]. The estimate predicts
a scaling Teq ∝ ε−3, ε ≡ E/N , independent of E and N separately, for the
FPU-β chain. The method has also been applied to estimate the equipartition
time for energy placed initially in short-wavelength (high-frequency) modes,
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Fig. 2.34. Lyapunov exponent λ vs. energy density ε for the FPU-β model with β =
0.1. The continuous line is the theoretical computation according to (2.125), while
the circles and squares are the results of numerical simulations with N respectively
equal to 256 and 2000

obtaining a scaling Teq ∼ ε−2 [92]. These scalings agree with those found
numerically, and furthermore give values of Teq well within a factor of 10 of
the numerical values. The basic method of making the estimation is outlined
below.

The assumption is that there is an effective number of driving modes δk,
dependent on the total energy, that transfer energy efficiently through the
Arnold diffusion mechanism, i.e. satisfying (2.50). Considering that Eγ 

E/δk, then the number of interacting modes δk is, from (2.50),

δk = μβE (2.150)
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Fig. 2.35. Lyapunov exponent λ vs. energy density ε for the one-dimensional XY
model. The continuous line is the theoretical computation according to (2.125), while
full circles, squares, and triangles are the results of numerical simulations with N ,
respectively, equal to 150, 1000, and 1500. The dotted line is the theoretical result
where the value of Ω0 entering (2.125) has been corrected in order to empirically
account for nontrivial configuration space topology
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where μ is of order unity. The procedure is then to calculate the rate that
energy is extracted from the modes containing energy, to be distributed among
all modes, with an integration over time until all modes have equal energy
(at equipartition). Since the energy is spread among many modes, we can
take the energy to be primarily in the linear part of the Hamiltonian. To
be specific we consider the case of transfer from long wavelengths to short
wavelengths.

The change in the linear energy Ei = (1/2)
(
P 2
i + ω2

iQ
2
i

)
of a driving low-

frequency mode i, can be calculated from the action-angle form of the Hamil-
tonian by taking the derivative with respect to the angle θi

dEi
dt

=
(
−2β
N + 1

)
ωi

∑

j,h1,h2

B (i, j, h1, h2)

√
ωiωjωh1ωh2IiIjIhIh2 sin θiang (j, h1, h2) , (2.151)

where ang(j, h1, h2) is a product of cosines of the angle variables. The notation
h1 and h2 explicitly indicates that the energy transfer occurs between a low-
frequency beat oscillation and a high-frequency mode difference oscillation
through the Arnold diffusion mechanism. In the above equation, the sum-
mation is over indices j, h1, and h2 for a given i. The only terms to trans-
fer energy to high-frequency modes are the ones where j = i, since then
the product of the two low-frequency angles does not have a fast phase
associated with it. Additionally, the selection rule requires that B = 0
unless

2i+ h1 + h2 = 2N + 2 , (2.152)

which reduces the index to a single sum. This result for a single low-frequency
mode i is an estimate for the average energy decay rate, which, from (2.151)
is

dEi
dt

= −
(

2β
N

)
ωi
βE

2π
EiEh (t) , (2.153)

where ωi = πi/N . Since δk low-frequency modes, assumed to have energy,
couple to δh high-frequency modes with δk = δh, the cross couplings imply
each high-frequency mode is coupled on average to δk/4 low-frequency modes.
The effect of the interaction of the phases between driving modes, when more
than one driving term exists, has not been studied. The simplest assumption
is that the effect from each low-frequency driving resonance is independent.
Setting ωi = βE/N (i = δh/2 = βE/π), and dividing by Ei, we obtain, an
average, for each mode in the package

dEi
Ei

= −β
π

(
βE

N

)2

Eh (t) dt . (2.154)
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Integrating (2.154) in time, with Ei(t) varying from E/δk at t = 0 to the
equipartition value E/N at the final time Teq one obtains

ln
(
N

δk

)


(
β

π

)(
βE

N

)2 ∫ T

0

Eh(t′)dt′ , (2.155)

The final step in the approximation is to estimate the value of
∫ T

0 Eh(t′)dt′

at T = Teq, a time of “near-equipartition.” The quantity Eh(t) appears in
an integral, so that its exact form is not required. For a diffusive process in
which the amplitudes of the modes increase with t1/2, we might expect the
mode energies to increase linearly with t, Eh(t) 
 (t/T )(E/N), such that the
time dependence is independent of N . This is found to be approximately true,
numerically, over most of the evolution to near-equipartition. Other forms of
the time dependence of Eh lead to only small numerical differences. Evaluat-
ing the integral with the assumption of linear time dependence of Eh(t) we
obtain

Teq 

2π

(βE/N)3
ln
(

π

2βE/N

)
. (2.156)

The numerical coefficient is only a rough estimate. Equation (2.156) exhibits
a basic scaling of T ∝ (N/E)3. The scaling has been checked numerically, by
rescaling the time as shown in Fig. 2.13. This scaling was also found by plotting
the time to reach neff/N = 0.4 against E/N . However, it was also pointed
out that a “best fit” stretched exponential also fit the data (see Fig. 2.14).
One can also compare the magnitude of Teq in (2.156) with the numerics.
From Fig. 2.15, taking E/N = 0.05 we find Teq ∼ 107. Considering the many
approximations, this value is reasonably close to the value of Teq 
 3 × 107

obtained from (2.156).
The same calculation method can be modified to determine the scaling and

estimate the value of Teq from high-frequency mode initial conditions. The
beat frequency in this case is the difference between the breather nonlinear
frequency and the linear-mode frequencies, which are again proportional to
βε as in the above analysis. However the high frequency is ωi 
 2 and thus
a factor of βε is removed from the drive, which gives the basic scaling of
Teq ∝ (βε)−2. This scaling was confirmed numerically, and the theoretic and
numerical values were again in reasonable agreement for high frequencies [92,
93, 94], as summarized in Sect. 2.9.2.

As previously noted, on-site potentials, as in the φ4 chain, involve addi-
tional complications, and the comparisons were correspondingly less definitive.
In particular, in [65] the m-scaling was estimated from the calculation to be
related to the ε scaling by the factor ε/m2, in contrast to the numerical re-
sult found in Fig. 2.18 which suggested ε/m2.75 = const. to produce the best
scaling.
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2.9 Analytical Calculations and Estimates: Scaling
Estimates from High Frequencies

2.9.1 Estimate of Coalescence into Single Chaotic Breather

It is not possible to make a complete quantitative calculation for the very
complicated process of chaotic breather coalescence; however, arguments have
been made for the FPU chain [91, 92] and for the φ4 chain [94] that predict the
scaling of the coalescence time with energy density. We review the main ar-
guments without details. The coalescence time-constant τB is estimated from
the standard description

τB =
1

nBσBυB
, (2.157)

where nB = kmN/2π is the initial number of breathers formed earlier in
time by the instability, which scales with ψm , υB is scaled by application
of the virial theorem to a moving breather and σB is scaled from the Born
approximation. For the FPU chain, the asymptotic scalings at small and large
amplitude for each factor, are

nB ∝
{
ψm
const. , υB ∝

{
ψm
const. , σB ∝

{
ψ2
m, small amplitude
ψ4
m, large amplitude

(2.158)
such that, taking the product in (2.157), we obtain a coalescence rate scaling
with amplitude

τB ∝ ψ4
m (2.159)

essentially independent of the amplitude. Since numerically one can use energy
as our independent variable, ψm can be related to E through the breather
equilibria, as given in the above references, which vary from low to high energy,
giving ψm ∝ E1/2 and ψm ∝ E1/4, for the FPU−β at low and high energies,
respectively. (The φ4 proportionalities are similar but not exactly the same).
Using the proportionalities above, for the FPU-β in (2.159), we obtain

τB ∝
{
E−2 small amplitude
E−1 large amplitude . (2.160)

The results in (2.160) have been nummerically verified at the higher amplitude
in [88] with some indication also of the steeper low amplitude scaling. The
φ4 chain has slightly different scaling and also some additional complications
as discussed in the original paper [94]. It was also noted in that paper that
nB is not necessarily determined by the fastest growing unstable mode, for all
initial conditions. In fact, most of the FPU numerics were performed with an
initial mode γ = 120, for which nB 
 9, initially, independent of ψm. However,
since most initial conditions were taken at sufficiently large ψm such that nB

is approximately constant, as calculated from the fastest growing mode, the
scaling was the same for the two cases.
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2.9.2 Estimate of Time to Equipartition

As already mentioned in Sect. 2.8.3, an estimate of the Teq can be made,
starting from high frequencies, using the same general procedure, as used
there, for initial low frequencies. The main differences are
(i) That the stochastic beat frequency ΩB is given by

ΩB = ωB − ωh , (2.161)

the difference between the breather frequency ωB and the high freequencies
ωh, where ωh 
 2, and from (2.89), ωB 
 (4+6βψ2

m)1/2. The beat frequencies
can be calculated analytically, but are quite complicated over the range of
energies explored numerically. A good approximation was found to be

ΩB 
 0.2βEB , (2.162)

which was used in the calculation [92].
(ii) For faster than exponential Arnold diffusion the CB energy EB needs to
be sufficiently large that

ΩB/δωl > 1 (2.163)

with the minimum δωl = π/N at low frequencies. Since this value is much
larger than the minimum δωh, the energies required to obtain stochastic dif-
fusion from high to low frequencies is also larger, as seen numerically.
(iii) However, this is partly cancelled by the fact that ωB in (2.162) does not
depend on a mode frequency that varies as N−1. Because of the absence of the
additional factor the resultant scaling is Teq ∝ ε−2, rather than the Teq ∝ ε−3

scaling for low energies. We do not repeat the calculation, which is, after these
modifications, similar to that presented in Sect. 2.8.3, with the final result for
the FPU-β chain [92]

Teq 

80π
5

(
βE

N

)−2

. (2.164)

The scaling of ε−2 has been checked numerically [88] with the absolute numer-
ical time approximately a factor of 5 longer that that predicted by (2.164).

A similar calculation has been performed for the φ4 chain [94]. There are
some additional complications, and the resultant scaling is not precisely ε−2

but varies with somewhat steeper scaling for the lowest values of ε. We have
already seen these results numerically in Sect. 2.6.2. These difficulties have
been considered, resulting in a more complicated estimate for the scaling of
Teq(ε) than that given in (2.164) for the FPU-β chain.

Another question that arises is whether for high-frequency initial condi-
tions there is a clear transition, with increasing energy from Teq ∝ ε−2 to
weaker ε scalings as found for low-frequency initial conditions. Clearly there
is a change of scaling at higher specific energy, as observed numerically in an
extreme case, shown in Fig. 2.24. There is also numerical evidence for such
transitions for both the FPU-β and φ4 chains in Fig. 2.25. The transition has
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not been investigated in detail, to determine whether it is relatively sharp, i.e.
a SST, or more diffuse. Since τB ∝ ε−1 and Teq ∝ ε−2, one would expect some
type of significant transition at an ε sufficiently high that the two time-scales
cross, such that a CB is not formed. Extrapolating the data in, for the FPU-β
chain with E varied and N = 128, the cross-over occurs at ε 
 4.5 (β = 0.1).
But this range of ε has not been numerically investigated. For the more com-
plicated φ4 chain there is no numerical evidence for a SST, but again there
have been no computations in the ε-range for which such a transition might
be expected.

2.10 Conclusions and Final Comments

It often happens that the failure of numerical or experimental results to sub-
stantiate theoretical predictions leads to the productive development of new
physics. So it was with the Fermi–Pasta–Ulam (FPU) problem in which a
one-dimensional chain of masses was connected to its nearest neighbors by
nonlinear restoring forces (2.1). Enrico Fermi initially suggested the problem
as a method of confirming his prediction that the nonlinearity would lead to
equipartition among the degrees of freedom, therefore leading to a dynamical
underpinning for statistical mechanics. However, the coupled differential equa-
tions, numerically integrated on a first-generation large digital computer, gave
the seemingly contrary result that the energy initially placed in the lowest of
the harmonic normal modes resulted in periodic (or near periodic) energy os-
cillations among the first few modes (see Fig. 2.1). The oscillations were soon
explained from perturbation theory as the nonlinear beating among neigh-
boring modes, but the fundamental question of whether equipartition would
eventually be reached was not answered. The early attempts to analyze the
dynamics led to better ways of employing perturbation theory and to better
understanding of nonlinear mode coupling.

The most celebrated result, following the lack of confirmation of statistical
properties of the FPU dynamics, was the development of soliton theory. In an
attempt to understand the apparent stability of recurrences Norman Zabusky
and Martin Kruskal found a Taylor expansion of the discreteness, valid for
long-wavelength modes, that recovered partial differential equations different
from the original nonlinear spring which produced the discretized chain of
oscillators. The resulting equations are the Korteveg–de Vries (KdV) equation
for the FPU-α chain with cubic nonlinearity, and the modified Korteveg–
de Vries (mKdV) equation for the FPU-β chain with quartic nonlinearity.
Nonlinear equations of this and related types had been known to have stable
traveling solutions where the dispersion and nonlinearity balance to produce
constant amplitude and propagation velocity. An arbitrary initial condition,
such as the lowest linear mode on the FPU-β chain breaks up initially into a
set of structures each having a steady traveling solution with its own velocity.
Remarkably, these structures are sufficiently stable that they pass through one
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another without breaking up, and the observed recurrences can be interpreted
in terms of their superpositions. But these results did not improve on the best
perturbation calculations and are clearly limited to long-wavelength (low-
frequency) modes by the approximations which led to (2.6). Partial differential
equations have an infinite number of freedoms, such that general integrability
from arbitrary initial conditions requires an infinite number of invariants of
the motion. The real excitement came when it was shown that such an infinite
set of invariants exists and the new field of soliton theory and applications was
born. A single initial nonlinear mode solution of the mKdV equation is found
to become unstable as the energy is increased. A linearization around the
nonlinear structure predicted the unstable wave numbers and growth rates,
and showed that the values correspond to the observed mode growth for the
same discretized structure on the FPU-β chain (see Sect. 2.4.3). The result
in which one soliton decomposes into a finite number is not inconsistent with
general soliton theory, but the instability gives us insight into the dynamics
that leads to chaotic motion and, ultimately, to equipartition.

Another important consequence of the numerical and theoretical work,
which attempted to both explain the original results and extend them to
other energies, initial conditions, and force laws, was that of relating high-
dimensional oscillator chain dynamics to low-dimensional chaos theory. The
development of KAM theory by Kolmogorov, Arnold, and Moser showed that
despite the lack of global integrals of the motion in generic systems of two or
more degrees of freedom (which in fact, motivated Fermi’s initial FPU study),
for small perturbations from integrable systems most of the phase space could
still be regular. But countering this, another result by V. I. Arnold showed
that generic systems of three or more degrees of freedom had stochastic res-
onance channels in the phase space that could reach close to any portion of
the phase space. Furthermore, a heuristic understanding of high-dimensional
systems indicated that the fraction of the phase volume that is stochastic
increases with increasing number of freedoms. Investigation of the rates of
diffusion through the stochastic web indicated that the “Arnold diffusion”
was normally exponentially slow in the perturbation parameter, but could
become large if the perturbation became large (see [15], Chap. 6). The results
suggested that, for N freedoms and with fixed perturbation strength (fixed
energy density), near equipartition would probably be obtained with increas-
ing N (the thermodynamic limit), but the time-scales might be exponentially
long and unapproachable computationally.

In addition to the low-dimensional theory that contributed to the under-
standing of high-dimensional Hamiltonian dynamics, the development of sta-
tistical measures were essential to the numerical investigations that elucidated
the system behavior. Although various methods have been useful, the most
important have been the calculation of Lyapunov exponents for the separation
of neighboring trajectories, and the information entropy which qualitatively
computes the number of modes taking part in the dynamics (see Sects. 2.1.6
and 2.3). To obtain equipartition it is necessary for the dynamics to be ergodic.
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Mixing, which implies ergodicity, is a property that holds if all trajectories are
on the average exponentially separating (positive KS entropy). This cannot
be exactly true for a divided phase space, and thus it might be qualitatively
stated that, if almost all of the space has positive KS entropy, then for prac-
tical purposes equipartition will be reached. Because the criterion depends on
exponentially diverging trajectories, an obvious set of quantities to be exam-
ined are the Lyapunov exponents, giving the separation of trajectories, with
positive values indicating exponential separation of trajectories, i.e. chaos.
The numerical calculation of Lyapunov exponents has been used extensively
to test for chaotic motion, as we have reviewed in Sect. 2.5.

Although the calculation of Lyapunov exponents is important in finding
a necessary condition for obtaining equipartition, a more direct quantity for
determining if equipartition is actually reached, and also for determining the
time-scale to reach it, is the information entropy (see Sects. 2.1.6 and 2.3).
Along with other statistical tools, computations of the information entropy
have been the backbone of the numerical observations, as we have reviewed
in Sects. 2.5 and 2.6. As described in Sect. 2.3.1, the information entropy can
be calculated for either modes or oscillators, with the mode description being
most useful if the initial conditions are from long wavelengths (low frequen-
cies); the numerical results are given in Sect. 2.5. The oscillator description
is most useful from short-wavelength (high-frequency) initial conditions, with
numerical results in Sect. 2.6.

An important early breakthrough in understanding the onset with in-
creasing energy of observable chaos, and the approach to equipartition on
numerically observable time-scales, was made by the application of Chirikov’s
“overlap criterion” to the FPU system by Izrailev and Chirikov. The some-
what heuristic criterion was very useful in finding transitions from localized
to extensive chaos in low-dimensional chaos. Estimates in the FPU system
were made both for long wavelengths and for short wavelengths to determine
the “overlap” of neighboring modes. However, numerical results demonstrated
that mode overlap of long-wavelength modes is not a necessary condition for
equipartition but approximates a transition between weak and strong stochas-
ticity (the SST). The result for short-wavelength modes is neither necessary
nor sufficient. It predicts easy overlap at short wavelengths due to mode crowd-
ing, while numerics show consistently that equipartition is more readily ob-
tained from long-wavelength than from short-wavelength initial conditions.

A partial resolution of the discrepancy between numerical observations of
transitions to observable equipartition and the analytic “overlap” estimates
came with the recognition that resonances among groups of modes would sat-
isfy an overlap criterion at much lower energies than overlap of the neighboring
modes directly. We have described the method of calculating this behavior,
both for the FPU-β chain with quartic nonlinearity, and the FPU-α chain
with cubic nonlinearity, in Sect. 2.4.1. The results agree with numerical ob-
servations, predicting that packets of long-wavelength modes can overlap, once
the energy is above a threshold, and determining scaling of the packet with
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energy and semi-quantitively determining its size. The scaling of the packet
size can also be predicted by applying dimensional arguments to the partial
differential equation approximation.

However, local interaction does not give a complete picture of the pro-
cesses by which equipartition can be reached on numerically observable time-
scales. To know how energy escapes from a mode packet at low frequencies
requires the understanding of the Arnold diffusion mechanism in which energy
can be transferred along resonances from long-wavelength to short-wavelength
modes. We have briefly described this condition in Sect. 2.4.1, but a complete
understanding requires a careful reading of the original work (see [55]). Once
the criterion for strong (nonexponentially slow) Arnold diffusion is well satis-
fied, an estimate of the scaling of the time to equipartition can be made, valid
in the thermodynamic limit. We gave a summary of the estimation method in
Sect. 2.8.3 which agrees well with numerical results for the FPU-β oscillator
chain, as presented in Sect. 2.5. The scaling of the equipartition time with
the inverse third power of the energy density, Teq ∝ ε−3 also agrees well with
numerical results from the FPU-α chain and for the φ4 chain which has an
onsite quartic potential.

A calculation of the Lyapunov exponent as a function of the energy density
can also be made using concepts from the geometrization of Hamiltonian me-
chanics. We have reviewed the theory in Sect. 2.4.7 and presented the specific
calculation for the FPU-β oscillator chain in Sect. 2.8.2. A complete exposi-
tion of the geometric method and its specific application to the FPU-β has
been given in a review [42]. From the definition in (2.5), the Lyapunov expo-
nent is determined by a long-time average, and is thus applicable from any
initial condition. The comparison is most easily made with numerics starting
from near-equipartition, which minimizes the effect of transients. By using
this method, the scaling of λ ∝ ε2 was determined for the FPU-β in the re-
gion of energy density for which Teq ∝ ε−3 and the transition to the strong
stochasticity regime, where the diffusion is across resonances, was also deter-
mined. Remarkably, the theoretically determined absolute values of λ are in
excellent agreement with the numerical values.

The dynamics of the evolution from short wavelengths (high frequencies) is
quite different than from the long wavelengths. The evolution, starting from a
high-frequency mode initial condition, occurs at higher energy and on a slower
time-scale than from energy initially in a low-frequency mode. A partial un-
derstanding of the increased stability of high-frequency modes comes from
the analysis of breather-like structures on discrete systems that admit exact
breather solutions. High-frequency mode initial conditions have symmetry of
neighboring oscillators close to that of localized exact breathers. The result-
ing dynamics consists of three stages. First, there is an initial stage in which
the mode breaks up into a number of breather-like structures. Second, on a
slower time-scale, these structures coalesce into one large unstable structure,
called a chaotic breather (CB). Third, the CB slowly disintegrates, result-
ing in equipartition. Since a single large CB closely approximates a stable
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breather, the final decay stage, toward equipartition, can be very slow. If the
energy was placed in the highest frequency mode, with a periodic boundary
condition that has strict alternation of the amplitudes from one oscillator
to the next, the configuration is stable up to a particular energy at which
a parametric instability occurs, leading to the events described above. How-
ever, the nonlinear evolution does not depend on special initial conditions,
but generically evolves from any high-frequency mode initial condition that
has predominately the alternating amplitude symmetry. One does not know,
in this generic situation, whether there exists any true energy threshold to
achieving equipartition. However, as discussed extensively with respect to
low-frequency mode initial conditions, the practical thresholds refer to ob-
servable time-scales. The scaling with energy density of the time to equiparti-
tion is estimated for high-frequency initial conditions from the beating of the
breather with the background, using the procedure developed to calculate the
equipartition time from low-frequency initial conditions. The result gives the
numerically observed scaling to equipartition of Teq ∝ ε−2, and reasonable
quantitative agreement with the numerically determined values.

Considerable insight into the behavior of a nonlinear oscillator chain, start-
ing from high-frequency mode initial conditions, can be obtained by introduc-
tion of an envelope function for the displacements of the oscillators. The initial
conditions for the envelope function only contain significant long-wavelength
perturbations. For the envelope function, an expansion is then possible to ob-
tain a nonlinear partial differential equation (PDE) which approximates the
behavior of the discrete system. Low-order expansions of this type produce
PDEs that have integrable solutions in the form of envelope breathers, anal-
ogous to the solutions produced from low-frequency initial conditions. Higher
order terms destroy the integrability, but we find, as expected, that discretized
oscillator chains form localized structures that approximate the breathers on
continuous systems, but are weakly unstable. The process by which the CBs
coalesce into a single CB has also been estimated theoretically. On average,
the large structures absorb energy from the smaller ones, as expected from
general theoretical considerations. The time constant for coalescence into a
single CB is estimated from the relation τB ≈ (nBσvB)−1 where nB is the
breather number, σ is a collision cross-section for absorption, and vB is a
characteristic breather velocity. Using this procedure in the numerically in-
vestigated energy range, reasonable agreement with the numerical scalings of
τB ∝ ε−1 is obtained. The numerical results are presented in Sect. 2.6 and the
analytic estimate for comparison to the numerics in Sect. 2.9.

To explore which processes are generic and which model dependent, it
is necessary to investigate other oscillator chains which are related to the
FPU chain but have significantly different parameters. The discretized Klein–
Gordon equation with quartic nonlinearity (the φ4 model) is such a chain.
The FPU-β chain, with only an intersite potential, is translationally invari-
ant (except for boundaries) and it is energy-rescalable on a single parameter.
In contrast, the φ4 chain has an additional on-site potential which adds a
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parameter [compare (2.1) with (2.9)], and is therefore more complicated to an-
alyze and explores a larger parameter space. Nevertheless, a comparison of the
φ4 chain to the FPU-β chain reveals similarities and explainable differences.
For a small-value linear on-site restoring force m = 0.1, of the individuals os-
cillators, the linear frequencies of most modes are similar in the φ4 and FPU
chains. Starting from long-wavelength (low-frequency) modes the numerical
calculations of Teq(ε) show similar behavior of the two chains, having power-
law behavior, depending only on ε over a wide range of ε, and N -dependent
transitions at low ε to values of Teq that may increase exponentially with
decreasing ε. For larger m (but m < 1) the value of ε required to achieve
a given Teq is much larger with strong m-scaling, which can be qualitatively
predicted from a heuristic argument. For short wavelengths (high frequencies)
the behavior of the two chains is similar and a simple argument predicts that
the same value of Teq can be obtained for φ4 as for the FPU if the φ4 value of
ε is a factor of 4 larger. The reasoning is that since the phases of neighboring
oscillators alternate for the FPU, the quadratic term is factor of 16 larger,
which is larger by a factor of 4 in energy; thus the energy in φ4 should be a
factor of 4 larger to bring Teq into correspondence. The predicted factor of
4 separation for the higher values of ε (higher E) is found when the scaling
follows ε−2 for both potentials, but the separation becomes larger as the φ4

potential scaling becomes steeper at low energy densities, due to additional
correlations.

The knowledge that nonlinear oscillator chains, such as the FPU, pro-
duced stochastic dynamics, encouraged the idea that they would reproduce
the Fourier heat law. But this was not the case. The configuration for study-
ing heat conductivity is different from that for studying equipartition, in that
the former is not a closed conservative system, but must be connected to heat
baths which emit and absorb energy. Since the steady state is not an equi-
librium, the dynamics involves short-time effects. The lack of normal thermal
conductivity for the FPU-β chain was found to be due to the excitation of
nonlinear waves, which were not diffusive. Momentum conservation in the
FPU chains is a key ingredient in preventing the stochasticity from produc-
ing the required diffusive energy flow. This led to the exploration of models
which included substrate potentials, such as various Klein–Gordon models,
which do produce normal heat conduction when their dynamics is primarily
stochastic. The history of these developments is given in Sect. 2.1.10, and the
basic theoretical ideas and numerical results are given in Sect. 2.7.

So what do we know about the generic properties of oscillator chains and
their implications for physics; and what are the outstanding problems that
have not been fully addressed? First, we can say that Fermi’s original intu-
ition about the role of nonlinear dynamics in underpinning statistical physics
has essentially been proved correct. For large systems (approximating the
thermodynamic limit) and at reasonably large energy densities, generic non-
linear oscillator chains with nearest neighbor coupling dynamically exhibit
stochastic diffusion leading to equipartition among oscillators and modes in
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isolated systems. Over a wide range of energy densities the Lyapunov expo-
nents, measuring the exponential separation of trajectories, and the resulting
times to achieve equipartition are both proportional to inverse power laws
of the energy density, but with different exponents. For the most thoroughly
studied FPU-β chain, these power laws have been calculated in various ap-
proximations that have yielded good agreement with numerics in the ranges
of oscillator number and energy density for which computers can yield nu-
merical results. Geometrical methods have been used to accurately predict
the scaling of the Lyapunov exponent with energy density for both weak and
strong diffusion, and the transition between the two regimes.

The transient dynamics, starting from a variety of initial conditions at
either long or short wavelengths, can be quite complicated, but is also rea-
sonably well understood. Again, referring to the most-studied FPU-β chain
from long-wavelength modes, the formation of mode packets on short time-
scales is numerically observed and theoretically understood. The relationship
with soliton formation and soliton instabilities has also been established. The
understanding of the role played by the web of resonance channels in phase
space, and the Arnold diffusion through the web to transport energy among
modes, is qualitatively understood, and the three resonance model for diffu-
sion has been successfully used to predict the observed numerics. From short-
wavelength modes, parametric instability coalescence into chaotic breathers,
which ultimately dissipate, is seen numerically and the scaling of its time-scale
with energy density (or energy) can be predicted. For other oscillator chains
there are differences and additional complications which are generally qual-
itatively understood. The FPU-α chain is a lowest order approximation to
the integral Toda chain and is therefore more stable, having a plateau in neff

during the time that the FPU-α Lyapunov exponent tracks the decay of the
Lyapunov exponent for the Toda chain (whose asymptotic value is zero). The
similarities and differences between the FPU-β and φ4 chains are also seen
numerically and qualitatively understood. These detailed dynamical processes
are very interesting from the general perspective of nonlinear dynamics. How-
ever, their significance for physical problems has not been explored in any
detail.

Less understood are the transitions at fixed N as ε is decreased. For
large values of N , and starting from generic long-wavelength initial condi-
tions, one expects transitions from inverse power-law scaling to exponential
scaling, when the diffusion is through decreasingly thin channels. Some nu-
merical hints of this behavior have been seen in the FPU-β and φ4 chains, but
the time-scales become exponentially long so that numerical results become
increasingly difficult to obtain. There are also special initial conditions for
which no diffusion occurs, an example being the π-mode with periodic bound-
ary conditions for an energy below the border of parametric instability. Other
situations are not so clear, particularly for small N , where numerical observa-
tions do not distinguish between initial conditions lying on regular orbits and
lying on stochastic orbits for which the stochasticity is unobservable.
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Another area of uncertainly is the relation between the inverse power-law of
Teq ∝ ε−3 for various oscillator chains, and the diffusion through the stochastic
channels. For the FPU-β system, starting from long wavelengths, the universal
s-shaped curve of neff vs. log(ε3t) (see Fig. 2.13) must consist of a complicated
averaging over many increasingly fine resonance channels as equipartition is
approached. No theory exists to explain the shape of this curve. The lack of
explanation of the detailed evolution of this macroscopic parameter points
to the difficulty in understanding detailed microscopic dynamics in problems
with many degrees of freedom.

For what concerns the problem of heat conduction, the most puzzling
question to be answered is the universality of the power-law divergence of
heat conductivity for FPU-like chains. Since numerics is unable to yield con-
clusive results, one can only hope that a theoretical approach, such as rigorous
hydrodynamic theory of transport in FPU-like chains, could provide the ex-
planation.

Finally, we remark that even in the simplest many-degree-of-freedom sys-
tems, with the FPU-α and FPU-β systems being prime examples, rigorous
results that are also useful in making quantitative calculations are difficult
to obtain. From the core material of this review, it is evident that numerical
calculations underpin our understanding of the dynamics and validate our
analytic calculations. For regions of the parameter space in which numerical
calculations are not practical, extrapolation can be useful, but the uncertainty
of relying on answers from calculations grows with increasing extrapolation
and our understanding becomes less secure. Clearly, there remain challenges
for theorists to obtain results that are both rigorous and useful for calcula-
tions, and for numerics to be extended into the areas of uncertainty.
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Abstract. Several years after the pioneering work by Fermi, Pasta and Ulam, fun-
damental questions about the link between dynamical and statistical properties
remain still open in modern statistical mechanics. Particularly controversial is the
role of deterministic chaos for the validity and consistency of statistical approaches.
This contribution reexamines such a debated issue taking inspiration from the prob-
lem of diffusion and heat conduction in deterministic systems. Is microscopic chaos
a necessary ingredient to observe such macroscopic phenomena?

3.1 Introduction

Statistical mechanics, founded by Maxwell, Boltzmann and Gibbs, aims to
explain the macroscopic properties of systems with a huge number of degrees
of freedom without specific assumptions on the microscopic dynamics, a part
from ergodicity [1, 2]. The discovery of deterministic chaos [3], beyond its
undoubted important implications on many natural phenomena, enforced us
to reconsider some basic problems standing at the foundations of statistical
mechanics such as, for instance, the applicability of a statistical description to
low-dimensional systems. However, even after many years, the experts do not
agree yet on the basic conditions which should ensure the validity of statistical
mechanics.

The spectrum of viewpoints found in literature is rather wide, ranging
from the Landau (and Khinchin [4]) earlier belief on the key role of the many
degrees of freedom and the (almost) complete irrelevance of ergodicity, to
the opinion of those who, as Prigogine and his school [5] consider chaos as
the crucial requirement to develop consistent statistical approaches. Recently
some authors (e.g. Lebowitz [6] and Bricmont [7]) have given new life to the
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debate [10, 5], renewing the intuition of Boltzmann [8] and Maxwell [9] on the
relevance of the huge number of particles in macroscopic systems.

This volume offers the opportunity to celebrate the 100th and 50th an-
niversaries of two of the most influential works in statistical physics: Einstein’s
work on Brownian motion (1905) [11] and Fermi’s one (1955) on the non-linear
chain of oscillators (al secolo the FPU work, from the authors Fermi, Pasta and
Ulam [12]). We shall discuss some aspects related to diffusion problems and
heat conduction focusing on the role of (microscopic) chaos for the occurrence
and robustness of these (macroscopic) phenomena. Transport phenomena, de-
spite their ubiquity in everyday life, are still subject of debate among theoretic
physicists.

Because of the variety of specific interactions and technical difficulties in
realistic systems, simplified microscopic models are unavoidable tools for the
study of transport mechanism. Several simulations and theoretical works have
shown that, in systems with very strong chaos (namely hyperbolic systems),
there exists a close relationship between transport coefficients (e.g. viscos-
ity, diffusivity, thermal and electrical conductivity) and indicators of chaos
(Lyapunov exponents, KS entropy, escape rates) [13, 14]. At a first glance,
the existence of such relations would support the point of view of who consid-
ers chaos as the basic ingredient for the applicability of statistical mechanics.
However, it is not possible to extend those results to generic systems. In fact,
we shall see that many counterexamples prove that chaos is not a necessary
condition for the emergence of robust statistical behaviors [15, 16]. In partic-
ular, we shall see that phenomena such as diffusion [17] and heat conduction
[18] may take place also in non-chaotic systems. These and many other ex-
amples provide indication that microscopic chaos is not the unique possible
origin of macroscopic transport in dynamical systems.

The material is organized into two, almost self-contained, parts. In the
first, after a brief historical introduction to the different microscopic models
proposed to explain macroscopic diffusion, we discuss a recent experiment
(and the consequent debate it stimulated) aimed to prove that microscopic
chaos is at the origin of Brownian motion. This gives us the possibility to
introduce and discuss the problem of diffusion in non-chaotic deterministic
systems, and to point out the necessary microscopic conditions to observe
diffusion. The second part is mostly devoted to a discussion of the celebrated
FPU numerical experiments and its consequences for the ergodic problem and
heat conduction. We shall see that there are non-chaotic models displaying
(macroscopic) heat conduction, confirming the non-essential role of chaos on
transport.

3.2 On the Microscopic Origin of Macroscopic Diffusion

At the beginning of the twentieth century, the atomistic theory of matter was
not yet fully accepted by the scientific community. While searching for phe-
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nomena that would prove, beyond any doubt, the existence of atoms, Einstein
realized that “. . .according to the molecular-kinetic theory of heat, bodies of
microscopically-visible size suspended in a liquid will perform movements of
such magnitude that they can be easily observed in a microscope . . .,” as he
wrote in his celebrated paper in 1905 [11]. In this work, devoted to compare
the different predictions that classical thermodynamics and molecular-kinetic
theory of heat make about those small bodies, Einstein argued that their mo-
tion has a diffusive character. Moreover, he discovered an important relation
among the diffusion coefficient D, the fluid viscosity η, the particles radius a
(having assumed spherical particles), Avogadro’s number NA, the tempera-
ture T and the gas constant R:

D =
1
NA

RT

6πηa
. (3.1)

Einstein relation (3.1), which may be seen as the first example of the
fluctuation–dissipation theorem [19], allowed for the determination of Avo-
gadro’s number [20] and gave one of the ultimate evidences of the existence
of atoms.

Einstein’s work on Brownian motion (BM) is based on statistical mechan-
ics and thermodynamical considerations applied to suspended particles, with
the assumption of velocity decorrelation.

One of the first successful attempts to develop a purely dynamical theory of
BM dates back to Langevin [21] that, as himself wrote, gave “. . . a demonstra-
tion [of Einstein results] that is infinitely more simple by means of a method
that is entirely different.” Langevin considered the Newton equation for a
small spherical particle in a fluid, taking into account that the Stokes viscous
force it experiences is only a mean force. In one direction, e.g. the x-direction,
one has

m
d2x

dt2
= −6πηa

dx
dt

+ F , (3.2)

where m is the mass of the particle. The first term of the r.h.s. is the Stokes
viscous force. The second one F (t) is a fluctuating random force, independent
of v = dx/dt, modeling the effects of the huge number of impacts with the
surrounding fluid molecules, which is taken as a zero-mean, Gaussian process
with covariance 〈F (t)F (t′)〉 = cδ(t− t′). The constant c is determined by the
equipartition condition 〈(dx/dt)2〉 = RT/(mNA), i.e. c = 12πηaRT/NA.

Langevin’s work along with that of Ornstein and Uhlenbeck [22] are at the
foundation of the theory of stochastic differential equations. The stochastic
approach is however unsatisfactory being a phenomenological description.

The next theoretical challenge toward the building of a dynamical the-
ory of Brownian motion is to understand its microscopic origin from first
principles. Almost contemporarily to Einstein’s efforts, Smoluchowski tried to
derive the large-scale diffusion of Brownian particles from the similar physical
assumptions about their collisions with the fluid molecules [23].
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A renewed interest on the subject appeared some years later, when it was
realized that even purely deterministic systems composed of a large num-
ber of particles give rise to macroscopic diffusion, at least on finite time
scales. These models had an important impact in justifying Brownian motion
theory and, more in general, in deriving a consistent microscopic theory of
irreversibility.

Some of these works considered chains of harmonic oscillators of equal
masses [24, 25, 26, 27], while others [28, 29] analyzed the motion of a heavy
impurity linearly coupled to a chain of equal mass oscillators. When the num-
ber of oscillators goes to infinity, the momentum of the heavy particle was
proved to behave as a genuine stochastic process described by the Langevin
equation (3.2). When their number is finite, diffusion remains an effective
phenomenon lasting for a (long but) finite time.

Soon after the discovery of dynamical chaos [30], it was realized that simple
low-dimensional deterministic systems may also exhibit a diffusive behavior.
In this framework, the two-dimensional Lorentz gas [31], describing the mo-
tion of a free particle through a lattice of hard round obstacles, provided the
most valuable example. As a consequence of the obstacle convexity, particle
trajectories are chaotic, i.e. aside from a set initial conditions of zero measure,
exhibit a positive and finite Lyapunov exponent,. At long times, for the case
of billiards, the mean squared displacement from the particle initial position
grows linearly in time. A Lorentz system with periodically arranged scatter-
ers is closely related to the Sinai billiard [32, 33], which can be obtained from
the former by folding the trajectories into the unitary lattice cell. The ex-
tensive study on billiards has shown that chaotic behavior might usually be
associated with diffusion in simple low-dimensional models, supporting the
idea that chaos was at the very origin of diffusion. However, more recently
(see, e.g. [17]) it has been shown that even non-chaotic deterministic systems,
such as a bouncing particle in a two-dimensional billiard with polygonal but
randomly distributed obstacles (wind-tree Ehrenfest model), may exhibit a
diffusion-like properties. This example can lead to think that the external
source of randomness may play a role similar to chaos (for a more detailed
discussion about this point see Sect. 3.2.2).

Deterministic diffusion is a generic phenomenon present also in simple
chaotic maps on the line. Among the many contributions we mention the
work by Fujisaka, Grossmann [34, 35] and Geisel [36, 37]. A typical example
is the one-dimensional discrete-time dynamical system:

x(t+ 1) = [x(t)] + F (x(t) − [x(t)]) , (3.3)

where x(t) (the position of a point-like particle) performs diffusion in the real
axis. The bracket [·] denotes the integer part of the argument. F (u) is a map
defined on the interval [0, 1] that fulfills the following requirements:

(i) The map, u(t+ 1) = F (u(t)) (mod 1) is chaotic.
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(ii) F (u) must be larger than 1 and smaller than 0 for some values of u, so to
have a non-vanishing probability to escape from each unit cell (a unit cell
of real axis is every interval C
 ≡ [
, 
+ 1], with 
 ∈ Z).

(iii) Fr(u) = 1 − Fl(1 − u), where Fl and Fr define the map in u ∈ [0, 1/2[
and u ∈ [1/2, 1] respectively. This anti-symmetry condition with respect
to u = 1/2 is introduced to avoid a net drift.

A very simple and much studied example of F is

F (u) =
{

2(1 + a)u if u ∈ [0, 1/2[
2(1 + a)(u− 1) + 1 if u ∈ [1/2, 1] , (3.4)

where a > 0 is the control parameter. It is useful to remind the link between
diffusion and velocity correlation, i.e. the Taylor–Kubo formula, that helps to
unravel how diffusion can be realized in different ways. The velocity correlation
function is defined as C(τ) = 〈v(τ)v(0)〉, where v(t) is the velocity of the
particle at time t. It is easy to see that for continuous time systems [e.g. (3.2)]

〈(x(t) − x(0))2〉 
 2 t
∫ t

0

dτ C(τ) . (3.5)

Standard diffusion, with D =
∫∞
0

dτ C(τ), is always obtained whenever the
hypotheses for the validity of the central limit theorem are verified:

(i) finite variance of the velocity: 〈v2〉 <∞;
(ii) faster than τ−1 decay of the velocity correlation function C(τ).1

The first condition, independently of the microscopic dynamics under con-
sideration (stochastic, deterministic chaotic or regular), excludes unphysical
models, i.e. with infinite variance for the velocity. The second requirement
corresponds to a rapid memory loss of initial conditions. It is surely verified
for the Langevin dynamics where the presence of the stochastic force entails
a rapid decay of C(τ). In deterministic regular systems, such as the model of
many oscillators, the velocity decorrelation (i.e. the small fluctuations of C(τ)
around zero, for almost all the time) is the result of the huge number of degrees
of freedom that act as a heat bath on a single oscillator. In the (non-chaotic)
Ehrenfest wind-tree model decorrelation originates from the disorder in the
obstacle positions. Deterministic chaotic systems, in spite of the fact that non-
linear instabilities generically lead to a memory loss, are more subtle. Indeed,
there are many examples, namely intermittent systems [38], characterized by
a slow decay of the velocity correlation function.

We end this section by asking whether it is possible to determine, by the
analysis of a Brownian particle, if the microscopic dynamics underlying the
observed macroscopic diffusion is stochastic, deterministic chaotic or regular.
1 In discrete-time systems, the velocity v(t) and the integral

∫
dτC(τ ) are replaced

by the finite difference x(t+1)−x(t) and by the quantity 〈v(0)2〉/2+
∑

τ≥1 C(τ ),
respectively.



128 M. Cencini et al.

3.2.1 Chaos or Noise? A Difficult Dilemma

Inferring the microscopic deterministic character of Brownian motion on an
experimental basis would be attractive from a fundamental viewpoint. More-
over it could provide further evidence to some recent theoretical and nu-
merical studies [39, 40]. Before discussing a recent experiment [41] in this
direction, we must open the “Pandora box” of the longstanding and contro-
versial problem of distinguishing chaos from noise in signal analysis [42] (see
also [45, 46, 47, 48, 49, 50]). For the sake of clearness on the terminology
used here, we specify that “chaos” refers to the motions originating from a
deterministic system with at least one positive but finite Lyapunov exponent,
and therefore a positive and finite Kolmogorov–Sinai entropy; “noise” instead
denotes the outcomes of a continuous valued stochastic process with infinite
value of Kolmogorov–Sinai entropy.

The first observation concerning the chaos/noise distinction is that, very
often in the analysis of experimental time series, there is not a unique model
of the “system” that produced the data. Moreover, even the knowledge of the
“true” model might not be an adequate answer about the character of the
signal. From this point of view, BM is a paradigmatic example: in fact it can
be modeled by a stochastic as well as by a deterministic chaotic or regular
process.

In principle, a definite answer exists. If we were able to determine the
maximum Lyapunov exponent (λ) or the Kolmogorov–Sinai entropy (hKS) of a
data sequence, we would know without uncertainty whether the sequence was
generated by a deterministic law (λ, hKS <∞) or by a stochastic one (hKS →
∞). Nevertheless, there are unavoidable practical limitations in computing
such quantities. They are indeed defined as infinite time averages taken in the
limit of arbitrary fine resolution. But, in experiments, we have access only to
a finite, and often very limited, range of scales and times.

However, there are measurable quantities that are appropriate for ex-
tracting meaningful information from the signal. In particular, we shall con-
sider the (ε, τ)-entropy per unit time [51, 52, 53] h(ε, τ) that generalizes the
Kolmogorov–Sinai entropy (for details see next section (3.8)). In a nutshell,
while for evaluating hKS one has to detect the properties of a system with
infinite resolution, for h(ε, τ) a finite scale (resolution) ε is involved. The
Kolmogorov–Sinai entropy is recovered in the limit ε→ 0, i.e. h(ε, τ) → hKS.
This means that if we had access to arbitrarily small scales, we could an-
swer the original question about the character of the law that generated
the recorded signal. Even if this limit is unattainable, still the behavior of
h(ε, τ) provides a very useful scale-dependent description of the signal char-
acter [42, 54].

For instance, chaotic systems (0 < hKS <∞) are typically characterized by
h(ε, τ) attaining a plateau ≈ hKS, below a resolution threshold, εc, associated
with the smallest characteristic length scale of the system. Instead, for ε > εc
h(ε, τ) < hKS, and in this range the details of the ε-dependence may be
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informative on the large scale (slow) dynamics of the system (see, e.g. [42,
54]). Indeed, at large scales typically chaotic systems give rise to behaviors
rather similar to stochastic processes (e.g. the diffusive behavior discussed in
the previous subsection) with characteristic ε-entropy. In stochastic signals,
although hKS = ∞, for any ε > 0, h(ε, τ) is a finite function of ε and τ . The
dependence of h(ε, τ) on ε and τ , when known, provides a characterization
of the underlying stochastic process (see [51, 53]). For instance, stationary
Gaussian processes with a power spectrum2 S(ω) ∝ ω−(2α+1) (being 0 < α <
1) are characterized by a power-law ε-entropy [51]:

lim
τ→0

h(ε, τ) ∼ ε−1/α . (3.6)

The case α = 1/2, corresponding to the power spectrum of a Brownian signal,
would give h(ε) ∼ ε−2. Other stochastic processes, such as time uncorrelated
and bounded ones, are characterized by a logarithmic divergence below a
critical scale, εc, which may depend on τ .

Definition and Computation of the ε-Entropy

For the sake of self-consistency in this subsection we provide some basic in-
formation on the definition and measurement (from experimental data) of the
ε-entropy, which was originally introduced in the context of information the-
ory by Shannon [52] and, later, by Kolmogorov [51] in the theory of stochastic
processes. The interested reader may find more details in [53] and [55].

An operative definition of h(ε, τ) is as follows. Given the time evolution of
a continuous variable x(t) ∈ �d, that represents the state of a d-dimensional
system, one introduces the vector in �md

X(m)(t) = (x(t), . . . ,x(t+mτ − τ)) , (3.7)

which represents a portion of the trajectory, sampled at a discrete time interval
τ . After partitioning the phase space �d using hyper-cubic cells of side ε,
X(m)(t) is coded into an m-word: Wm(ε, t) = [i(ε, t), . . . , i(ε, t + mτ − τ)],
where i(ε, t+jτ) labels the cell in �d containing x(t+jτ). For bounded motions,
the number of available cells (i.e. the alphabet) is finite. Under the hypothesis
of stationarity, the probabilities P (Wm(ε)) of the admissible words {Wm(ε)}
are obtained from the time evolution of X(m)(t). Then one introduces the
m-block entropy, Hm(ε, τ) = −

∑
{Wm(ε)} P (Wm(ε)) lnP (Wm(ε)), and the

quantity hm(ε, τ) = [Hm+1(ε, τ) − Hm(ε, τ)]/τ . The (ε, τ)-entropy per unit
time, h(ε, τ) is defined by [52]

h(ε, τ) = lim
m→∞hm(ε, τ) . (3.8)

The Kolmogorov–Sinai entropy is obtained in the limit of small ε:
2 The power spectrum S(ω) is the Fourier transform of 〈(x(t) − x(0))2〉.
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hKS = lim
ε→0

h(ε, τ) . (3.9)

In principle, in deterministic systems h(ε), and henceforth hKS, depend neither
on the sampling time τ [3] nor on the chosen partition because its rigorous
definition[53] would require the infimum to be taken over all possible partitions
with elements of size smaller than ε. However, in practical computations, the
specific value of τ is important, and the impossibility to take the infimum
over all the partitions implies that, at finite ε, h(ε) may depend on the chosen
partition. Nevertheless, for small ε, the correct value of the Kolmogorov–Sinai
entropy is usually recovered independently of the partition [3].

Let us stress that partitioning the phase space does not mean a discretiza-
tion of the states of the dynamical system, which still evolves on a contin-
uum. The partitioning procedure corresponds to a coarse-grained description
(due, for instance, to measurements performed with a finite resolution), that
does not change the dynamics. On the contrary, discretizing the states would
change the dynamics, implying periodic motions in any deterministic sys-
tems. This happens, for instance, in any floating point computer simulations;
however such periods are, apart from trivial cases, very long and practically
undetectable.

In experimental signals, usually, only a scalar variable u(t) can be mea-
sured, and moreover the dimensionality of the phase space is not known a
priori. In these cases, one uses delay-embedding techniques [45, 46], where the
vector X(m)(t) is build as (u(t), u(t+ τ), . . . , u(t+mτ − τ)), now in �m. This
is a special instance of (3.7). Then to determine the entropies Hm(ε), very ef-
ficient numerical methods are available (the reader may find an exhaustive
review in [45]). The delay-embedding procedure can be applied to compute
the ε-entropy of deterministic and stochastic signals as well. The dependence
of the ε-entropy on the observation scale ε can be used to characterize the
process underlying the signal [53].

In the following, we exemplify the typical difficulties by analyzing the map:

x(t+ 1) = f(x(t)) = x(t) + p sin(2πx(t)) . (3.10)

As soon as p > 0.7326 . . . , f(x) is such that f(x) > 1 and f(x) < 0 for some
x ∈]0, 1[. This implies that the trajectory can travel across different unitary
cells giving rise to large-scale diffusion, i.e. asymptotically:

〈[x(t) − x(0)]2〉 
 2Dt , (3.11)

where D is the diffusion coefficient. We note that p = O(1) sets the intrinsic
scale of the displacements to be O(1). Therefore, as far as the ε-entropy is
concerned, for ε� 1 (small-scale observations) one should be able to recognize
that the system is chaotic, i.e. h(ε) displays a plateau at hKS = λ. For ε� 1
(large scale observations), due to the diffusive behavior, h(ε) is characterized
by the scaling (3.6) with α = 1/2, therefore
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Fig. 3.1. Numerically evaluated (ε, τ )-entropy for the map (3.10) with p = 0.8
computed by the standard techniques [45] at τ = 1 (◦), τ = 10 (�) and τ = 100
(�) and different block length (m = 4, 8, 12, 20). The boxes refer to the entropy
computed with τ = 1 but by using periodic boundary condition over 40 cells. The
use of periodic boundary conditions is necessary to probe scales small enough to
recover the Lyapunov exponent. The straight lines correspond to the two asymptotic
behaviors, h(ε) = hKS � 1.15 and h(ε) ∼ ε−2

h(ε) 

{
λ for ε� 1
D/ε2 for ε� 1 , (3.12)

where λ is the Lyapunov exponent and D is the diffusion coefficient. The typ-
ical problems encountered in numerically computing h(ε) can be appreciated
in Fig. 3.1. First notice that the deterministic character (i.e. h(ε, τ) ≈ hKS)
appears only at ε < εc ≈ 1. However, the finiteness of the data set imposes a
lower cut-off scale εd below which no information can be extracted from the
data (see [56]). As for the importance of the choice of τ note that if τ is much
larger or much shorter than the characteristic time-scale of the system at the
scale ε, then the correct behavior of the ε-entropy [42] cannot be properly
recovered. Indeed the diffusive behavior h(ε) ∼ ε−2 is roughly obtained only
by considering the envelope of hm(ε, τ) evaluated at different values of τ . The
reason for this is that the characteristic time of the system is determined by
its diffusive behavior Tε ≈ ε2/D. On the other hand, the plateau at the value
hKS can be recovered only for τ ≈ 1, even if, in principle, any value of τ could
be used.

We also mention that if the system is deterministic, to have a meaningful
measure of the entropy, the embedding dimension m has to be larger than
information dimension of the attractor [3].
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Experiments on the Microscopic Origin of Brownian Motion

We are now ready to discuss the experiment and its analysis reported in [41].
In this experiment, a long-time record (about 1.5 × 105 data points) of the
motion of a small colloidal particle in water was sampled at regular time
intervals (Δt = 1/60 s) with a remarkable high spatial resolution (25 nm).
To our knowledge, this is the most accurate measurement of a BM. The data
were then processed by means of standard methods of non-linear time-series
analysis [45] to compute the ε-entropy.3 This computation shows a power-law
dependence h(ε) ∼ ε−2. Actually, similarly to what is displayed in Fig. 3.1, this
behavior is recovered only by considering the envelope of the h(ε, τ)-curves,
for different τs. However, unlike to Fig. 3.1, no saturation h(ε, τ) ≈ const.
is observed for small ε. Nevertheless, the authors assume from the outset
that the system dynamics is deterministic and, since in deterministic systems
h(ε, τ) ≤ hKS ≤

∑+
i λi, deduce from the positivity of h(ε) the existence of

positive Lyapunov exponents. Their conclusion is thus that microscopic chaos
is at the origin of the macroscopic diffusive behavior.

However, as several works pointed out (see [57, 58]), the huge amount of
involved degrees of freedom (Brownian particle and the fluid molecules), the
impossibility to reach a (spatial and temporal) resolution high enough, and
the limited amount of data points do not allow for such optimistic conclusions.
Avoiding a technical discussion on these three points we simply notice that
the limitation induced by the finite resolution is particularly relevant to the
experiment. For example, if the analysis of Fig. 3.1 would be restricted to the
region with ε > 1 only, then discerning whether the data were originated by
a chaotic system or by a stochastic process would be impossible.

Particularly interesting is the fact that, as shown by Dettman et al. [17, 57],
the finite amount of data severely limits our ability to distinguish not only if
the signal is deterministic, chaotic or stochastic but also if it is deterministic
regular, i.e. of zero entropy. The following example serves as a clue to better
understand the way in which a deterministic non-chaotic systems may give
rise (at least on certain temporal and spatial scales) to a stochastic behavior.

Let us consider two signals, the first generated by a continuous ran-
dom walk:

ẋ(t) =
√

2Dη(t) , (3.13)

where η is a zero mean Gaussian variable with 〈η(t)η(t′)〉 = δ(t− t′), and the
second obtained as a superpositions of Fourier modes:
3 Of course in data analysis, only scalar time series are available and the dimen-

sionality of the space of state vectors is a priori unknown. However, one can use
the delay embedding technique to reconstruct the phase-space. In this way, the
ε-entropy can be evaluated as discussed in the previous section. It is worth stress-
ing that this procedure can be applied even though the equations of motion of
the system, which generated the signal, are unknown. Moreover, this approach is
meaningful independently of the stochastic or deterministic nature of the consid-
ered signal.
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Fig. 3.2. a Signals obtained from (3.14) with M = 104 and random phases uniformly
distributed in [0, 2π]. The numerically computed diffusion constant is D ≈ 0.007.
b Time record obtained with a continuous random walk (3.13) with the same value
of the diffusion constant as in a. In both cases, data are sampled with τ = 0.02, i.e.
105 data points

x(t) =
M∑

i=1

X0i sin (Ωit+ φi) . (3.14)

The coordinate x(t) in (3.14), upon properly choosing the frequencies [29, 42]
and the amplitudes (e.g.X0i ∝ Ω−1

i ), describes the motion of a heavy impurity
in a chain of M linearly coupled harmonic oscillators. We know [29] that x(t)
performs a genuine BM in the limit M →∞. For M <∞ the motion is quasi-
periodic and regular, nevertheless for large but finite times it is impossible to
distinguish signals obtained by (3.13) and (3.14) (see Fig. 3.2). This is even
more striking looking at the computed ε-entropy of both signals (see Fig. 3.3).

The results of Fig. 3.3 along with those by Dettman et al. [57] suggest
that, by assuming also the deterministic character of the system, we are in
the practical impossibility of discerning chaotic from regular motion.

It is worth mentioning that recently some interesting works [43, 44] applied
the entropy analysis to the motion of a heavy impurity embedded in an FPU-
chain (see Sect. 3.3.1), which is a chaotic variant of the above example. The
purpose was again to infer the chaotic character of the whole FPU-chain by
observations on the impurity motion only. It was found that the impurity does
not alter the behavior of the FPU-chain so it can be considered as a true probe
of the dynamics. The impurity performs a motion that, when observed at
small but finite resolutions, closely resembles a Brownian motion. Time series
(ε, τ)-entropy analysis both in momentum and position allows for detecting
the chaotic nature of the FPU unperturbed system, and clearly locating the
stochasticity threshold.
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Fig. 3.3. Numerically evaluated (ε, τ )-entropy using using 105 points from the time
series of Fig. 3.2. We show the results for embedding dimension m = 50. The straight
lines show the D/ε2 behavior

From the above discussion, one reaches a pessimistic view on the possi-
bility to detect the “true” nature of a signal by means of data analysis only.
However, the situation is not so bad if the question about the character of a
signal is asked only relatively to a certain interval of scales. In this case, in
fact, it is possible to give an unambiguous classification of the signal character
based solely on the entropy analysis and free from any prior knowledge of the
system/model that generated the data. Moreover the behavior of h(ε, τ) as a
function of (ε, τ) provides a very useful “dynamical” classification of stochas-
tic processes [53, 59]. One has then a practical tool to classify the character
of a signal as deterministic or stochastic, on a given scale, without referring
to a specific model, and is no longer obliged to answer the metaphysical ques-
tion, whether the system that produced the data was a deterministic or a
stochastic [42, 60] one.

3.2.2 Diffusion in Deterministic Non-chaotic Systems

With all the proviso on its interpretation, Gaspard et al. [41] experiment
had a very positive role not only in stimulating the discussion about the
chaos/noise distinction but also in focusing the attention on deep conceptual
aspects of diffusion. From a theoretical point of view, the study of chaotic
models exhibiting diffusion and their non-chaotic counterpart is indeed im-
portant to better understand the role of microscopic chaos on macroscopic
diffusion.

In Lorentz gases, the diffusion coefficient is related, by means of periodic
orbits expansion methods [13, 14, 61], to chaotic indicators such as the Lya-
punov exponents. This suggested that chaos was or might have been the basic
ingredient for diffusion. However, as argued by Dettman and Cohen [17], even
an accurate numerical analysis based on the ε-entropy, being limited by the
finiteness of the data points, has no chance to detect differences in the diffu-
sive behavior between a chaotic Lorentz gas and its non-chaotic counterpart,
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such as the wind-tree Ehrenfest’s model. In the latter model, particles (wind)
scatter against square obstacles (trees) randomly distributed in the plane but
with fixed orientation. Since the reflection by the flat edges of the obstacles
cannot produce exponential separation of trajectories, the maximal Lyapunov
exponent is zero. The result of [17] implies thus that chaos may be not indis-
pensable for having deterministic diffusion. The question may be now posed
on what are the necessary microscopic ingredients to observe deterministic
diffusion at large scales.

We would like to remark that, in the wind-tree Ehrenfest’s model, the
external randomness amounting to the disordered distribution of the obstacles
is crucial. Hence, one may conjecture that a finite spatial entropy density hS is
necessary for observing diffusion. In this case, deterministic diffusion might be
a consequence either of a non-zero “dynamical” entropy (hKS > 0) in chaotic
systems or of a non-zero “static” entropy (hS > 0) in non-chaotic systems.
This is a key-point, because someone can argue that a deterministic infinite
system with spatial randomness can be interpreted as an effective stochastic
system.4

With the aim of clarifying this point, we consider here a spatially disor-
dered non-chaotic model [62], which is the one-dimensional analog of a two-
dimensional non-chaotic Lorentz system with polygonal obstacles. Let us start
with the map defined by (3.3) and (3.4), and introduce some modifications to
make it non-chaotic. One can proceed as exemplified in Fig. 3.4, that is by
replacing the function (3.4) on each unit cell by its step-wise approximation
generated as follows. The first-half of C
 is partitioned in N micro-intervals

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.5

1.0

F
(u

)

Fig. 3.4. Sketch of the random staircase map in the unitary cell. The parameter
a defining the macroscopic slope is set to 0.23. Half domain [0, 1/2] is divided into
N = 12 micro-intervals of random size. The map on [1/2, 1] is obtained by applying
the antisymmetric transformation with respect to the center of the cell (1/2, 1/2)

4 This is probably a “matter of taste.”
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[
 + ξn−1, 
+ ξn[, n = 1, . . . , N , with ξ0 = 0 < ξ1 < ξ2 < · · · < ξN−1 < ξN =
1/2. In each interval, the map is defined by its linear approximation

FΔ(u) = u− ξn + F (ξn) if u ∈ [ξn−1, ξn[ , (3.15)

where F (ξn) is (3.4) evaluated at ξn. The map in the second half of the unit
cell is then determined by the anti-symmetry condition with respect to the
middle of the cell. The quenched random variables {ξk}N−1

k=1 are uniformly
distributed in the interval [0, 1/2], i.e. the micro-intervals have a random ex-
tension. Further they are chosen independently in each cell C
 (so one should
properly write ξ(
)n ). All cells are partitioned into the same number N of ran-
domly chosen micro-intervals (of mean size Δ = 1/N). This modification of
the continuous chaotic system is conceptually equivalent to replacing circular
by polygonal obstacles in the Lorentz system [17].

Since FΔ has slope 1 almost everywhere, the map is no longer chaotic, vio-
lating the condition i) (see Sect. 3.2). For Δ → 0 (i.e. N →∞) the continuous
chaotic map (3.3) is recovered. However, this limit is singular and as soon as
the number of intervals is finite, even if extremely large, chaos is absent. It
has been found [62] that this model still exhibits diffusion in the presence of
both quenched disorder and a quasi-periodic external perturbation

x(t+ 1) = [x(t)] + FΔ(x(t) − [x(t)]) + γ cos(αt) . (3.16)

The strength of the external forcing is controlled by γ and α defines its fre-
quency, while Δ indicates a specific quenched disorder realization. The sign
of γ is irrelevant; without lack of generality we study the case γ > 0.

The diffusion coefficient D is then numerically computed from the linear
asymptotic behavior of the mean quadratic displacement, see (3.11). The re-
sults, summarized in Fig. 3.5, show that D is significantly different from zero
only for values γ > γc. For γ > γc, D exhibits a saturation close to the value of
the chaotic system (horizontal line) defined by (3.3) and (3.4). The existence
of a threshold γc is not surprising. Due to the staircase nature of the system,
the perturbation has to exceed the typical discontinuity of FΔ to activate the
“macroscopic” instability which is the first step toward the diffusion. Data
collapsing, obtained by plotting D versus γN , in Fig. 3.5 confirms this argu-
ment. These findings are robust and do not depend on the details of forcing.
Therefore, we have an example of a non-chaotic model in the Lyapunov sense
by construction, which performs diffusion.

Now the question concerns the possibility that the diffusive behavior arises
from the presence of a quenched randomness with non-zero spatial entropy per
unit length. To clarify this point, similarly to [17], the model can be modified
in such a way that the spatial entropy per unit cell is forced to be zero, and
see if the diffusion still persists.

Zero spatial entropy per unit length may be obtained by repeating the
same disorder configuration every M cells (i.e. ξ(
)n = ξ

(
+M)
n ). Looking at the

diffusion of an ensemble of walkers it was observed that diffusion is still present
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Fig. 3.5. Log–Log plot of the dependence of the diffusion coefficient D on the ex-
ternal forcing strength γ. Different data relative to a number of cell micro-intervals
N = 50, 100 and 150 are plotted vs the natural scaling variable γN to obtain a col-
lapse of the curves. Horizontal line represents the result for chaotic system (3.3, 3.4)

with D very close to the expected value (as in Fig. 3.5). A careful analysis
(see [62] for details) showed that the system displays genuine diffusion for a
very long times even with a vanishing (spatial) entropy density, at least for
sufficiently large M .

These results along with those by Dettman and Cohen [17] allow us to draw
some conclusions on the fundamental ingredients for observing deterministic
diffusion (both in chaotic and non-chaotic systems).

• An instability mechanism is necessary to ensure particle dispersion at small
scales (here small means inside the cells). In chaotic systems, this is realized
by the sensitivity to the initial condition. In non-chaotic systems, this may
be induced by a finite size instability mechanisms. Also, with zero maximal
Lyapunov exponent one can have a fast increase of the distance between
two trajectories initially close [63]. In the wind-tree Ehrenfest model this
stems from the edges of the obstacles, in the “stepwise” system of Fig. 3.4
from the jumps.

• A mechanisms able to suppress periodic orbits and therefore to allow for
a diffusion at large scale.

It is clear that the first requirement is not very strong while the second is
more subtle. In systems with “strong chaos,” all periodic orbits are unsta-
ble and, so, it is automatically fulfilled. In non-chaotic systems, such as the
non-chaotic billiards studied by Dettman and Cohen and the map (3.16), the
stable periodic orbits seem to be suppressed or, at least, strongly depressed, by
the quenched randomness (also in the limit of zero spatial entropy). However,
unlike the two-dimensional non-chaotic billiards, in the one-dimensional sys-
tem (3.4,3.15,3.16), the periodic orbits may survive to the presence of disorder,
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so we need the aid of a quasi-periodic perturbation to obtain their destruction
and the consequent diffusion.

3.3 The Heritage of the Fermi–Pasta–Ulam Problem
for the Statistical Mechanics

The ergodic theory begun with Boltzmann’s effort to justify the determination
of average values in kinetic theory. Ergodic hypothesis states that time aver-
ages of observables of an isolated system at the equilibrium can be computed
as phase averages over the constant-energy hyper-surface. This statement can
be regarded as the first attempt to establish a link between statistical me-
chanics and the dynamics of the underlying system. One can say that proving
the validity of ergodic hypothesis provides a “dynamical justification” of sta-
tistical ensembles.

The ergodic problem, at an abstract level, had been attacked by Birkhoff
and von Neumann who proved their fundamental theorems on the existence
of time averages and established a necessary and sufficient condition for the
ergodicity. In spite of their mathematical importance, on a practical ground
such theorems do not help very much to really solve the ergodic problem in
statistical physics.

There exists a point of view according to which the effectiveness of a
statistical mechanics approach resides mainly on the presence of many de-
grees of freedom rather than on the underlying (chaotic or regular) dynamics.
Khinchin in his celebrated book Mathematical Foundation of the Statistical
Mechanics [4] presents some important results on the ergodic problem that
need no metrical transitivity. The main point of his approach relies on the
concept of relevant physical observables in systems with a huge number of
degrees of freedom. Since physical observables are non-generic functions (in
mathematical sense), the equivalence between time and ensemble averages
should be proved only for a restricted class of relevant observables. Moreover
for physical purposes, it is “fair” to accept the failure of ergodicity for few (in
the sense of sets of small measure) initial conditions.

In plain words, Khinchin’s formulation, coinciding with Boltzmann’s point
of view (see, e.g., Chap. 1 of [2]), asserts that statistical mechanics works,
independently of ergodicity, because the (most meaningful) physical observ-
ables are practically constant, a part in regions of very small measure, on
the constant energy surface. Within this approach, dynamics have a marginal
role, and the existence of “good statistical properties” is granted by the large
number of degrees of freedom. However, the validity of Khinchin’s statement
restricts to a special class of observables not covering all the physically inter-
esting possibilities. Therefore for each case, a detailed study of the specific
dynamics is generally needed to assess the statistical properties of a given
system.
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The issue of ergodicity is naturally entangled with the problem of the
existence of non-trivial conserved quantities (first integrals) in Hamiltonian
systems. Consider a system governed by the Hamiltonian

H(I, φ) = H0(I) + εH1(I, φ) , (3.17)

where I = (I1, . . . , IM ) are the action variables and φ = (φ1, . . . , φM ) are the
phase variables. If ε = 0 the system is integrable, there are M independent
first integrals (the actions Ii) and the motion evolves on M -dimensional tori.
Two questions arise naturally. Do the trajectories of the system (3.17) remain
“close” to those of the integrable one? Do some conserved quantity, besides
energy, survive in the presence of a generic (small) perturbation εH1(I, φ)? Of
course whenever other first integrals exist the system cannot be ergodic.

In a seminal work, H. Poincaré [64] showed that generally a system
like (3.17) with ε �= 0 does not possess analytic first integrals other than
energy. This result sounds rather positive for the statistical mechanics ap-
proach. In 1923, Fermi [65], generalizing Poincaré’s result, proved that for
generic perturbations H1 and M > 2, there cannot exist, on the 2M − 1 di-
mensional constant-energy surface, even a single smooth5 surface of dimension
2M − 2 that is analytical in the variables (I, φ) and ε. From this result, Fermi
argued that generic (non-integrable) Hamiltonian systems are ergodic.

At least in the physicists’ community, this conclusion was generally ac-
cepted and, even in the absence of a rigorous demonstration, there was a vast
consensus that the non-existence theorems of regular first integrals implied
ergodicity.

3.3.1 FPU: Relaxation to Equilibrium and Ergodicity Violation

Thirty-two years later Fermi itself, together with Pasta and Ulam, with one
of the first numerical experiments, in the celebrated paper Studies of Non-
linear Problems [12] (often referred with the acronym FPU) showed that the
ergodic problem was still far from being solved. The FPU model studies the
time evolution of a chain of N particles, interacting by means of non-linear
springs:

H =
N∑

n=0

[
p2
n

2m
+
K

2
(qn+1 − qn)2 +

ε

α
(qn+1 − qn)α

]
, (3.18)

with boundary conditions q0 = qN+1 = p0 = pN+1 = 0, α = 3 or 4 and K > 0.
The Hamiltonian is of the form (3.17) with a harmonic (integrable) part and
a non-integrable (anharmonic) term O(ε). For ε = 0, one has a collection of
N non-interacting harmonic modes of energies Eks, which remain constant.
What happens if an initial condition is chosen in such a way that all the energy
is concentrated in a few normal modes, for instance E1(0) �= 0 and Ek(0) = 0
for k = 2, . . . , N? Before the FPU work, the general expectation would have
5 For instance, analytic or differentiable enough.
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Fig. 3.6. E1(t)/Etot, E2(t)/Etot, E3(t)/Etot for the FPU system, with N = 32,
α = 3, ε = 0.1 and energy density E = Etot/N = 0.07. (Courtesy of G. Benettin [66])

been that the first normal mode would have progressively transferred energy
to the others and that, after some relaxation time, every Ek(t) would fluctuate
around the common value. Therefore, it came as a surprise the fact that no
tendency toward equipartition was observed, even for long times. In other
words, a violation of ergodicity and mixing was found. Figure 3.6 shows the
time evolution of the fraction of energy contained in three modes (k = 1, 2, 3),
in a system with N = 32.

At the beginning all the energy is contained in mode 1. Instead of a dis-
tribution of the energy among all the available modes, with a loss of memory
of the initial state, the system exhibits a close to periodic behavior. The ab-
sence of equipartition can be well appreciated looking at Fig. 3.7, where the
quantities

E(av)k(T ) =
1
T

∫ T

0

Ek(t)dt , with k = 1, . . . , N , (3.19)

i.e. the energies in the modes, averaged along the observation time T , are
displayed. As one can see, almost all of the energy remains confined in the
first four modes.

The existence of non-ergodic behavior in non-integrable Hamiltonian sys-
tems is actually a consequence of the so-called KAM theorem [67, 68, 69],
whose first formulation, due to A. N. Kolmogorov, dates back to the year be-
fore the FPU paper. This was surely unbeknown to Fermi and his colleagues.
The FPU result can be seen (a posteriori) as a numerical “verification” of the
KAM theorem and, above all, of its physical relevance, i.e. the tori survival
for physically significant values of the non-linearity. After Kolmogorov and



3 Role of Chaos for the Validity of Statistical Mechanics 141

FPU, it is now well established that ergodicity is a non-generic property of
mechanical systems.

Concerning the FPU problem, in terms of the KAM theorem, the following
scenario, at least for large but finite times, can be outlined [70, 71, 72]. For
N particles and for a given energy density E = E/N there is a threshold εc
for the strength of the perturbation such that

(a) if ε < εc the KAM tori are dominant and the system is essentially regular;
(b) if ε > εc the KAM tori are negligible and the system is essentially chaotic.

However, the long-time evolution of very large chains with small ε is hindered
by the presence of metastable states. To probe such an asymptotics by nu-
merical simulations is extremely hard, for a discussion on the subject see the
contributions by Benettin et al. and Lichtenberg et al. in this volume.

In most of the physical situations where the strength of the perturbation
(i.e. the Hamiltonian) is fixed, the control parameter is E . There exists a crit-
ical energy density, separating regular from chaotic behaviors. This is evident
by comparing Fig. 3.8 with Fig. 3.7. In Fig. 3.8 the same quantities of Fig. 3.7
are plotted, but now they refer to a system where the energy density is much
greater than before: E = 1.2; the system has entered the chaotic region and
equipartition is established.

However, also when most KAM tori are destroyed, and the system turns
out to be chaotic, the validity of ordinary statistical mechanics is not auto-
matically granted. Indeed the relaxation time for reaching equipartition may
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Fig. 3.7. Time averaged fraction of energy, in modes k = 1, 2, 3, 4 (bold lines, from
top to below) and

∑32
k=5 E(av)k(T )/Etot (dashed line). The parameters of the system

are the same as in Fig. 3.6 (Courtesy of G. Benettin [66].)
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parameters of the system are N = 32, α = 3, ε = 0.1 and energy density E =
Etot/N = 1.2 (Courtesy of G. Benettin [66])

become very large (see [73, 74, 75, 76, 77, 78, 79] for a detailed discussion
about this point).

The problem of slow relaxation is rather common in high-dimensional
Hamiltonian systems, where [80, 81] though the phase-space volume occupied
by KAM tori decreases exponentially with the number of degrees of freedom
(which sounds like a good news for statistical mechanics) nonetheless very long
time-scales are involved. This means that it takes an extremely long time for
the individual trajectories to forget their initial conditions and to invade a
non-negligible part of the phase space. Indeed, even for very large systems,
Arnol’d diffusion is very weak and different trajectories, although with a high
value of the Lyapunov exponent, maintain some of their own features for a
very long time.

We conclude this part emphasizing that also in high-dimensional systems
the actual role of chaos is not yet well understood. For instance, in [82] de-
tailed numerical computations on the FPU system show that both the internal
energy and the specific heat, computed with a time average, as functions of
the temperature are rather close to the prediction of the canonical ensemble.
This is true also in the low-energy region (i.e. low temperature) where the
system behaves in a regular way (the KAM tori are dominant). This supports
Khinchin approach (though the observables are not in the class of the sum
functions6) on the poor role of dynamics. Indeed strong chaos seems to be

6 Khinchin defines sum functions as any function of the form
∑N

n=1 fn(qn, pn), fn

assuming order 1 values. Such observables, in the large N limit, are self-averaging,
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unnecessary for the prediction of the statistical mechanics to hold. However,
this is not the end of the story because in other non-linear systems (such
as a chain of coupled rotators) the situation is different: even in the pres-
ence of strong chaos one can observe disagreement between time average and
ensemble average [82].

In the following, we discuss the problem of heat transport that allows us
to discuss the role of chaos for the validity of transport properties.

3.3.2 Heat Transport in Chaotic and Non-chaotic Systems

As stated in the introduction, a part of the statistical mechanics community
accepts the picture according to which the instabilities of microscopic particle
dynamics are the basic requirement for the onset of macroscopic transport.
In this framework, several works [13, 14] have shown that, in some systems,
there exists a relationship between transport coefficients (thermal or electri-
cal conductivity, viscosity, diffusivity, etc.) and Lyapunov exponents. Such
a link is of remarkable importance because it establishes a straightforward
connection between the microscopic dynamical properties of a system and its
macroscopic behavior, which is the main goal of statistical mechanics. How-
ever, as exemplified in the previous sections, chaotic dynamics does not seem
to be a necessary condition to both equilibrium and out-of-equilibrium statis-
tical mechanics approaches. In fact, we have seen that transport may occur
even in the absence of deterministic chaos. These counterexamples pose some
doubts on the generality and so on the conceptual relevance of the links found
between chaotic indicators and macroscopic transport coefficients.

Heat conduction is a typical phenomenon that needs a microscopic mech-
anism leading to normal diffusion that distributes particles and their energy
across the whole system. Since a chaotic motion has the same statistical prop-
erties of a “random walk,” when observed at finite resolution, this mechanism
can be found in the presence of either exponential instability in deterministic
dynamics or intrinsic disorder and non-linearities.

In the context of the conduction problem, FPU chains have recently played
an important role in further clarifying the transport properties of low spatial
dimension systems. FPU models represent simple but non-trivial candidates
to study heat transport by phonons in solids whenever their boundaries are
kept at different temperatures. This issue becomes even more interesting at
low spatial dimensions where the constraints set by the geometry may induce
anomalous transport properties characterized by the presence of divergent
transport coefficients in the thermodynamic limit [83]. Thermal conductivity
χ, defined via the Fourier’s Law

J = −χ∇T ,

i.e. they are practically constant on the constant-energy surface, aside a region of
small measure.
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relates the heat (energy) flux J to a temperature gradient. When a small
temperature difference δT = T1 − T2 is applied to the ends of a system of
linear size L, the heat current across the system is expected to be

J = −χδT
L

.

For some one- and even two-dimensional systems, theoretical arguments, con-
firmed by several simulations, predict a scaling behavior J ∼ Lα−1 implying
a size dependent conductivity

χ(L) = Lα . (3.20)

As a consequence, χ diverges in the limit L → ∞ with a power law whose
exponent α > 0 depends on the specific system considered. The presence of
this divergence is referred to as anomalous heat conduction in contrast with
normal conduction which, according to dimensional analysis of Fourier’s Law,
prescribes a finite limit for χ. FPU chains are systems where the anomaly in
the heat transport is clearly observed. Its origin can be traced back to the
existence of low-energy modes which survive long enough to propagate freely
before scattering with other modes. Such modes can carry much energy and
since their motion is mainly ballistic rather than diffusive, the overall heat
transport results to be anomalous. Models other than FPU indeed presents
this peculiar conduction, as widely shown in the literature [18, 84, 85]. Then
the issue is the general understanding of the conditions leading to this phe-
nomenon and more specifically the role of microscopic dynamical instabilities.
A well-known chaotic system, such as the Lorentz Gas in a channel [86] config-
uration, provides an example of a system with normal heat conduction. This
model consists of a series of semicircular obstacles with radius R arranged in
a lattice along a slab of size L × h (h << L) see Fig. 3.9. As in a Lorentz
system, particles scatter against obstacles but do not interact with each other.

T1

φ ψ
T1 T2

T2

Fig. 3.9. Example of channel geometry used in [84, 86] to study heat transport in
low-dimensional chaotic (upper panel) and non chaotic billiards (lower panel)
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Two thermostats at temperatures T1 and T2 respectively are placed at
each end of the slab to induce transport. They reinject into the system those
particles reaching the ends with a velocity drawn from a Gaussian velocity
distribution with variance proportional to the temperatures T1 and T2. In
the case of semicircular obstacles, the system is chaotic and one observes a
standard Fourier’s Law [86].

In [18] and [84], some non-chaotic variants of the Lorentz channel have
been proposed in order to unravel the role of exponential instabilities in the
heat conduction. In those models, called the Ehrenfest Channel, the semicircu-
lar obstacles were replaced with triangular ones, so that the system is trivially
non-chaotic since collisions with flat edges of the obstacles cannot separate
trajectories more than algebraically. The results show that when two angles
(e.g. φ and ψ) of the triangles are irrational multiple of π, the system exhibits
a normal heat conduction. On the contrary, for rational ratio, such as isosce-
les right triangles, the conduction becomes anomalous. The single particle
heat flux across N cells J1(N) scales as J1(N) ∼ Nα, while the temperature
gradient behaves as 1/N implying that χ(N) diverges as N → ∞. The ex-
planation of such a divergence can be found in the single-particle diffusivity
along the channel direction which occurs in a non-standard way. Indeed, the
evolution of a large set of particles has a mean squared displacements from
initial conditions which grows in time with a power-law behavior

〈[x(t) − x(0)]2〉 ∼ tb

with an exponent 1 < b < 2. This super-diffusion is the unique responsible
for a divergent thermal conductivity independently of Lyapunov instabilities,
since the model has a zero Lyapunov exponents.

When an Ehrenfest Channel with anomalous thermal conductivity is disor-
dered, for instance, by randomly modulating the height of triangular obstacles
or their positions along the channel, the conduction follows Fourier’s law, be-
coming normal [18]. This scenario is rather similar to that one discussed in
Sect. 3.2.2 for diffusion on non chaotic maps.

The works in [83, 87, 88] suggest that the anomalous conduction is associ-
ated with the presence of a mean free path of energy carriers that can behave
abnormally in the thermodynamic limit. For FPU the long mean free path
is due to soliton-like ballistic modes. In the channels, the long free flights,
between consecutive particle collisions, become relevant. The above consider-
ations suggest a very week role of chaos for heat transport, and for transport
in general, since also systems without exponential instability may show trans-
port, even anomalous.

3.4 Concluding Remarks

The problem of distinguishing chaos from noise cannot receive an absolute
answer in the framework of time series analysis. This is due to the finiteness
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of the observational data set and the impossibility to reach an arbitrary fine
resolution and high embedding dimension. However, we can classify the signal
behavior, without referring to any specific model, as stochastic or determin-
istic on a certain range of scales.

Diffusion may be realized in both stochastic and deterministic systems.
In particular, as the analysis of polygonal billiards and non-chaotic maps (see
Sect. 3.2.2) shows, chaos is not a prerequisite for observing diffusion and, more
in general, nontrivial statistical behaviors.

In a similar way, we have that for the validity of heat conduction chaos is
not a necessary ingredient. Also in systems with zero maximal Lyapunov ex-
ponent (see [84, 85, 86]) the Fourier’s law (or its anomalous version) can hold.

We conclude by noticing that the poor role of exponential instability for
the validity of statistical laws does not seem to be limited to transport prob-
lems. For instance it is worth mentioning the interesting results of Lepri
et al. [89] showing that the Gallavotti–Cohen formula [90], originally proposed
for chaotic systems, holds also in some non-chaotic model.
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Abstract. A review is given of the works on the FPU problem that were partic-
ularly relevant in connection with the metastability perspective, proposed in the
year 1982. The idea is that there exists a specific energy threshold above which the
time-averages of the relevant quantities quickly agree with the predictions of classi-
cal equilibrium statistical mechanics, whereas below it there exist two time scales.
First there is a quick formation of a packet of low-frequency modes which do share
the energy, and this produces a metastable state that lasts for a long time; then
the system attains the final equilibrium state. There are strong indications that the
specific energy threshold does not vanish in the limit of infinitely many particles.
The review is given for the case of a one-dimensional FPU chain.

4.1 Introduction

If one looks at the scientific literature on the FPU problem, 50 years after the
original paper (or rather report) [1], one will find a rather large amount of
papers (see, for example the recent special issue of the journal Chaos [2]). But
if one tries to extract from them any clear conclusion about the mathematical
status of the problem or the physical meaning of the results, one may remain
rather perplexed and have the impression of a certain confusion. Or, even, one
can find statements as if the problem had already been solved and there were
nothing more to be said (see [3], p. 2). In this chapter, we will try to indicate,
among the many papers on the subject, the ones which in our opinion played
a significant role with respect to the main question we have in mind, namely
that of establishing whether the FPU problem may have some relevant phys-
ical impact or not. We will try to show how the question is still completely
open, although one may be confident that it may be solved in a near future.

We now give a preliminary summary of the history we are going to trace
back in this chapter, in the above mentioned perspective. First of all, let us
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recall that the essential result of the original FPU report was the exhibition
of what we now call “the FPU paradox”. Namely, numerical solutions of the
equations of motion were performed for a model of a discretized string (or
equivalently of a one-dimensional crystal, actually, a chain of N particles with
nearest-neighbour nonlinear interactions), and it was observed that, starting
from a long-wavelength initial datum (and thus very far from statistical equi-
librium), there was quickly formed an apparently stationary state, extremely
different from the one expected according to classical equilibrium statistical
mechanics.

The FPU report had, 10 years later (1965), a great impact in mathemat-
ics, because it stimulated the well-known work [4] of Zabusky and Kruskal,
in which the FPU result was interpreted in terms of solitons. In turn, this
fact paved the way to the whole research on infinite-dimensional integrable
systems, which quickly became a fashionable and extremely interesting math-
ematical field in itself, with the result that its relation to the FPU problem
was somehow neglected. We will point out later how the relations between
the two subjects, solitons and FPU problem, were reestablished in very recent
times. In may be worth remarking that, as the soliton theory is essentially
equivalent to integrability, by some naive transitivity some people may have
been induced to associate FPU to integrability, which corresponds to even
exalting the FPU paradox.

The next essential step, which by the way also eliminated the possible
confusion just mentioned, was made one year later (1966) by Izrailev and
Chirikov in the work [5] (see also [6]), with the discovery that the paradox
disappears (i.e., a quick agreement with the predictions of classical equilib-
rium statistical mechanics is found) if initial data are taken of the FPU type
(long-wavelength), but with a sufficiently high energy. In other words, there
somehow exists a critical energy Ec, above which the paradox disappears.
However, Izrailev and Chirikov appeared even to go beyond such a result, be-
cause they also advanced the additional conjecture (supported by some kind
of analytical considerations, later adjusted by their pupil Shepelyansky in [7],
with arguments subsequently critically discussed by Ponno in [8]) that the
FPU paradox disappears at all in the thermodynamic limit (N tending to
infinity, with positive specific energy ε = E/N). On the other hand, a little
later (1971) Bocchieri et al. (in [9]) reported numerical results that appeared
to support the opposite conjecture. This fact was particularly emphasized by
Galgani and Scotti and by Cercignani (see [10], [11] and the review [12]),
who were pointing out that the FPU paradox, if it persists in the thermo-
dynamic limit, may have a deep physical impact. With such papers ends the
first phase of the history of the FPU problem, at least in our personal way of
reconstructing it. At that moment the alternative seemed to be whether the
paradox disappears in the thermodynamic limit or not, i.e., whether one has
εc → 0 for N →∞ or not, where εc = Ec/N is the specific energy threshold.

But in such an alternative the mathematical (and even the physical) setting
of the problem was a rather “naive” one, because it appeared that one had to
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decide whether, in the terminology then used, the motions are of “ordered”
or of “chaotic” type (below or above the threshold respectively), whereas
the deep question of determining the “relaxation times” for the approach to
equilibrium (which actually was the very question raised in the original FPU
report itself) was completely overlooked. The breakthrough in this direction
came from a paper of the year 1982 by Fucito et al. (see [13]), which clearly
was conceived within a scientific frame, the theory of glasses (particularly
studied by a group of people around Parisi in Roma), in which a special
attention was naturally payed to the possibility that relaxation times of quite
different orders of magnitude may show up. This actually constitutes what we
now call the metastability scenario: The time-averages of the relevant physical
quantities are expected to agree with the predictions of classical equilibrium
statistical mechanics at any energy after a sufficiently long time-scale, the
“final” one (which is the one described by the limit t→∞), and the paradox
is interpreted as corresponding to the existence of another, shorter, time-scale
(the fast scale), within which a relaxation is produced to some intermediate
state. Such an intermediate state at first sight appears as an equilibrium
one, although it is destined to subsequently relax, on a much longer time-
scale, to the “final”equilibrium state. The way in which the existence of an
energy threshold can be conceived within such a metastability scenario was
understood much later (see [14]).

In an attempt to trace back, in the present days, a kind of historical review
on the subject, one cannot but remain perplexed by remarking that the paper
of Fucito et al. did not receive at that time the attention that would appear
natural today. Indeed, apart from a bunch of papers written immediately
later, for a long time the metastability scenario was essentially forgotten.
In particular, no discussion was given of the relevant problem that was left
open within such a scenario, namely to establish whether the formation of a
metastable state is a phenomenon that persists in the thermodynamic limit
or not. The idea of the metastability perspective actually reappeared only
rather recently, under the stimulus of the work [15] by Carati and Galgani
(see also [16]), devoted to the problem of estimating the specific heats in
systems of FPU type. In such a paper, the existence of relaxation times of
different orders of magnitude was reported, and a qualitative analogy with
the problem of glasses was explicitly pointed out. Finally, a vivid numerical
illustration of the metastability phenomenon, with a particularly impressive
exhibition of two quite different relaxation times, was given by Berchialla et al.
in [14]. In particular, it was found that the phenomenon of the two separated
time-scales occurs only below a certain energy, which can thus be interpreted
as the critical energy in the sense of Bocchieri et al.

Finally, a deep analytical understanding of the metastability scenario in
the FPU problem was given in a paper by Bambusi and Ponno (see [17]),
through a result holding in the thermodynamic limit. In such a paper, by
the way, a bridge with the old Zabusky and Kruskal contribution was given.
Indeed, a general mathematical frame (the method of resonant normal forms)



154 G. Benettin et al.

was devised in order to approximate the FPU system for not too long times,
and this actually amounts to justify the use of a pair of KdV equations for
not too long times, thus explaining the quick formation of the metastable
state, in a way that is essentially equivalent to that of Fucito et al. The
result of Bambusi and Ponno actually holds only for an extremely special
class of initial conditions, but a strong indication that significant results may
be obtained also for a much broader set of initial data, is afforded by a very
recent result of one of us (see [18]), where for the first time it was proved, in a
concrete model, that the techniques of Hamiltonian perturbation theory can
be extended to the thermodynamic limit (previous results uniform in N were
given, by Bambusi and Giorgilli in [19], but only for a finite energy E, namely
for vanishing specific energy ε = E/N in the limit N →∞).

On the basis of the successes obtained with such recent results, one may
be tempted to conclude that the FPU paradox should persist in the thermo-
dynamic limit. But a deep question still remains open, namely the “question
of the dimensions”. Indeed, all the results previously mentioned refer to the
FPU problem in its original formulation, namely in the one-dimensional case
(a chain of particles), and there remains the problem of establishing whether
the phenomenon of the quick formation of a metastable state persists (still
in the thermodynamic limit) when one passes to the case of dimension two
and especially to the “physical case” of dimension three. At the moment, a
few results in dimension larger than one are available in the literature, for
example [20, 21], but in our opinion they do not allow one to draw a definite
conclusion. So in the present review we shall not enter the question. However,
by judging from the results that were recently obtained in the one-dimensional
case, we are rather confident that the problem may find a solution in the near
future.

4.2 The First Phase, 1955–1972: From FPU to Izrailev
and Chirikov and to Bocchieri et al.; the Suggestion
of a Possible Physical Interpretation

4.2.1 The Original FPU Paper and the FPU Paradox

Fermi, Pasta and Ulam considered the simplest model of a discretized non-
linear string, which can also be interpreted as a model of a one-dimensional
crystal, namely, a chain of equal particles with nearest-neighbours nonlinear
interactions (nonlinear springs), and fixed ends. Denoting by xj the displace-
ments of the particles from their equilibrium positions and by pj the corre-
sponding momenta, j = 0, . . . , N + 1, with the boundary conditions

x0 = 0 , xN+1 = 0 ,

the Hamiltonian of the system is then
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H(x1, · · · , xN , p1, · · · , pN ) =
1
2

N∑

j=1

p2
j +

N+1∑

j=1

V (xj+1 − xj) (4.1)

where the potential V actually chosen was

V (x) =
1
2
x2 +

α

2
x3 +

β

3
x4 .

Here, the mass of the particles and the harmonic constant of the springs have
been set equal to 1, while α and β are positive parameters. It is well known that
the corresponding linearized system (α = β = 0) can be transformed, through
a linear change of variables, to a system of uncoupled linear oscillators (normal
modes) with a corresponding Hamiltonian H2 which, in terms of action-angle
variables Ik, ϕk, takes the form

H2 =
N∑

k=1

Ek ,

where
Ek = ωkIk

are the normal-mode energies, having angular frequencies ωk given by

ωk = 2 sin
kπ

2(N + 1)
.

According to classical equilibrium statistical mechanics, the statistical
properties of an isolated system (such as the FPU one) at equilibrium at
a given total energy E should be described by the microcanonical measure
(the one naturally induced on the “energy surface” H = E by the Lebesgue
measure in the whole phase space) or equivalently (at least for sufficiently
large N) by the “canonical” or Gibbs measure in the whole phase space with
a suitable temperature T = T (E). The fundamental result of classical equilib-
rium statistical mechanics is then the “equipartition theorem”, according to
which, in the harmonic limit (α = β = 0), the expected values of the harmonic
energies Ek at a given total energy E, which we denote by < Ek >E , are all
equal, independent of k,

< Ek >E= E/N ≡ ε , k = 1, . . . , N , (4.2)

where ε = E/N is the specific energy, and for the common value ε one has
the interpretation ε = kBT , where kB is the Boltzmann constant and T the
absolute temperature. The result does not change qualitatively for a slightly
anharmonic system (α and β small) and for a small temperature T (i.e., a
small specific energy ε = E/N), because the anharmonic corrections to the
relations (4.2) do vanish in the limit α, β → 0 or T → 0 (i.e., ε→ 0).
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Let us now come to the dynamics. In the harmonic case the system is
“integrable”, namely it has N integrals of motion (the harmonic actions Ik
or equivalently the harmonic energies Ek = ωkIk) which are independent
and in involution (their mutual Poisson brackets vanish). Instead, the system
is expected to be ergodic, i.e., to have no (measurable) integral of motion
apart from the total Hamiltonian H itself, when the perturbation is present
(for α �= 0 or β �= 0), no matter how small the perturbation be. This was
suggested by a famous theorem of Poincaré (see [22]), to which Fermi himself
had contributed in one of the first works of his youth (see [23] and also [24]),
and this was probably the main reason for him to come back again to such a
problem near the end of his life.

Thus one meets with the problem of how is it possible to reconcile such
a dichotomy (N integrals of motion in the harmonic case α = β = 0, no
integral of motion independent of the Hamiltonian in the perturbed case, no
matter how small the perturbation be) with the continuity of the solutions
of the equations of motion with respect to the parameters. A possible way of
recovering continuity is by making reference to the notion of relaxation time.
In order to make this point clear, let us recall what the ergodicity property is in
our particular case of a Hamiltonian system with a phase space M coinciding
with the energy surface ΓE defined by H = E. As above, by < f >E we
denote the corresponding microcanonical expectation of a dynamical variable
f : M → IR. Denoting by {gt}t∈ IR, gt : M → M , the flow induced by the
equations of motion, and by x a point in phase space, then the ergodicity of
the microcanonical distribution amounts to the property

f(t, x) → < f >E as t→∞

for all measurable dynamical variables f and for almost all initial data x ∈M ,
where f(t, x) is the “time-average” of the function f up to time t with initial
datum x:

f(t, x) =
1
t

∫ t

0

f(gsx) ds .

Now, as particularly pointed out by von Neumann (see [25]), for every sig-
nificant dynamical variable f there should exist a typical relaxation time τ ,
defined as the first time such that the time-average essentially coincides with
the “phase average” < f >E for all times larger than it.

Obviously, the elimination of the just mentioned dichotomy should cor-
respond to the fact that the relaxation time τ does actually depend on the
parameters (α, β and E), and should tend to infinity as they tend to zero.
i.e., as the linear system is approached. So FPU had in mind to determine,
through numerical solutions of the equations of motion, the relaxation times
for the time-averages Ek(t, x) of the energies Ek, for initial data very far from
equilibrium. As the equilibrium expectations of such energies are all equal
(equipartition), the most significant initial datum corresponding to a situ-
ation out of equilibrium is the one in which the energy is given to just one
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mode, for example the “first one” (i.e., the one with lowest frequency), namely
the initial datum with E1 = E, Ek = 0 for k = 2, · · · , N , and for example all
particles in their equilibrium positions, xj = 0, j = 1, . . . , N .

The essence of their numerical computations is well summarized by the
first and the last figures of their paper (corresponding to Figs. 4.1 and 4.2
here). They considered the case N = 32 with the first mode initially excited
(in the way just mentioned) for a certain value of the total energy E and
certain values of α and β. They were expecting that the energy would soon
spread over all other modes k = 2, · · · , N . Instead, they found that the values
of the instantaneous mode energies Ek versus time t were as in Fig. 4.1. One
sees that the energy, initially given to mode 1, passes to the modes 2, 3, 4 and
5 (each of such modes entering the sharing of energy at a proper characteristic
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Fig. 4.1. The time evolution of the harmonic energies. The figure is a reproduction
of the first one of the original FPU report. Here, N = 32 (with α = 1/4, β = 0),
and the energy was given initially just to the lowest frequency mode. One sees that
the energy, instead of flowing to all the 32 modes, remains confined within a packet
of low-frequency modes, namely modes 1 up to 5
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Fig. 4.2. Time-averaged harmonic energies Ek versus time. The figure is a repro-
duction of the last one of the original FPU report

time—this is a point to which we will come back later), and then flows back
almost completely to the first mode (this is called the recurrence property). In
any case, the energy does not appear to flow to the high-frequency modes at all
(or almost at all). The most striking feature was however exhibited by the last
figure of their paper (Fig. 4.2), where the time-averagesEk(t, x) of the energies
Ek up to time t were plotted versus time. Indeed such a figure clearly shows not
only that the final state predicted by classical equilibrium statistical mechanics
was not attained, but also that a relaxation had indeed been attained to some
other kind of (apparently stationary) state (after a certain time, the time-
averages do not appear to change any more), which is completely different
from the final expected one (equipartition). The stabilization of the averages
is much more evident in Fig. 4.3, where the calculation has been pushed to a
much longer time with respect to Fermi’s one.

This is what we like to call the FPU paradox : Instead of a slow relaxation
to the final equilibrium state, there is exhibited a rather quick relaxation to
some kind of “nonstandard” state, in which the energy turns out to be shared
only within a packet of low-frequency modes, having a certain well defined
width, i.e., extending up to some characteristic frequency. One somehow has
a kind of “partial thermalization” involving just such a packet, with the high-
frequency modes essentially excluded, as if the system were composed only
of an effective number of degrees of freedom, substantially smaller than N .
This fact is well exhibited in Fig. 4.4, where we report the corresponding
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Fig. 4.3. The FPU phenomenon: exhibition of the apparent stabilization. Time-
averaged harmonic energies Ek versus time in log–log scale, for a time interval much
longer than in the original FPU report. The curves are drawn only for the first eight
modes. Notice that the “final” value of Ek is a decreasing function of the wave-
number k (which is not indicated on the corresponding curve in the figure), actually
of exponential type (at least for k > 3). Here, N = 32 and E = 0.05 (and thus
specific energy ε = E/N � 0.0015). Taken from [26]
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Fig. 4.4. The spectrum (namely the time-averaged energies Ek versus k/N), for the
same orbit of Fig. 4.3, at the final time of the calculation. Notice the logarithmic
scale for the energies. This exhibits how the modes involved in the energy shar-
ing constitute a low-frequency packet with a tail presenting an exponential decay
towards the high frequencies
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“spectrum”, namely the values of the time-averages Ek(t, x) versus the mode-
number k (actually, versus k/N) at the final time of the calculation. Notice the
exponential tail, on which we will come back later. The reaction of Fermi (who
had passed away before the paper was written down) is reported by Ulam, in
the preface to the reproduction of the paper in Fermi’s Collected Papers, in
the following terms: “The results of the calculations . . .were interesting and
quite surprising to Fermi. He expressed to me the opinion that they really
constituted a little discovery in providing intimations that the prevalent beliefs
in the universality of mixing and thermalization in nonlinear systems may not
be always justified”.

4.2.2 The Paper of Zabusky and Kruskal, and the KdV Equation

With the paper [4] of Zabusky and Kruskal (1965), the Korteweg–de Vries
(KdV) equation

ut + uux + uxxx = 0

entered the game. Here one thinks of a function u = u(x, t) which gives, at
time t, the profile of a continuous nonlinear string interpolating the FPU
chain of particles. The fact that the interpolation of the FPU chain is rather
well described by the KdV equation in certain situations is since then a well-
known fact, and is proved in some standard way by multi-scale methods which
are familiar in several fields of applied mathematics (see, for example the
application given later in [27]).

From the way in which the KdV equation was associated by Kruskal and
Zabusky to the FPU model, it is completely clear that the solutions of the
KdV equation should provide a good approximation to those of the FPU model
only for initial data corresponding to an excitation of low-frequency modes
(i.e., for long-wavelength initial data). A relevant further point is however that
the agreement should be expected to hold only for not too long times, as was
particularly emphasized in the later “deduction” of the KdV equation that was
given quite recently by Bambusi and Ponno, through a technique extending
to Hamiltonian partial differential equations certain methods of perturbation
theory (Birkhoff normal forms) well known in the case of a finite number N
of degrees of freedom.

We give here a particular emphasis to the latter fact, because no explicit
mention of it is made in the original Zabusky–Kruskal paper. Rather, just
at the beginning of the paper, it is said that the KdV equation “can be
used to describe the one-dimensional, long time, behavior of small, but finite
amplitude, . . . long waves in the anharmonic crystal.” Here, we are pointing
out that this should be understood as meaning “long time” within the time-
scale up to which the KdV equation provides a good approximation to the
solutions of the FPU equations themselves. We will come back to this point
later.

In any case, Zabusky and Kruskal studied the KdV equation, and were able
to exhibit the existence of three time-scales (or time intervals, as they say),
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namely, in their words: “(I) Initially, the first two terms (of the KdV equation)
dominate and the classical overtaking phenomenon occurs; that is, u steepens
in regions where it has a negative slope. (II) Second, after u has steepened
sufficiently, the third term becomes important and serves to prevent the for-
mation of a discontinuity. Instead, oscillations of small wavelength . . .develop
on the left of the front. The amplitudes of the oscillations grow and finally
each oscillation achieves an almost steady amplitude . . .and has a shape al-
most identical to that of an individual solitary-wave solution (of the KdV
equation). (III) Finally, each such ‘solitary-wave pulse’ or ‘soliton’ begins to
move uniformly . . .”. For a recent numerical illustration of this description,
see [28] by Lorenzoni and Paleari.1

So the theory of solitons had come to its modern life, and started to be
pursued in itself, giving rise to the whole theory of infinite-dimensional inte-
grable systems, while its relation to the FPU problem was somehow neglected.
To such a connection we will come back later.

4.2.3 The Izrailev–Chirikov Contribution

a) The discovery of a stochasticity threshold.

The next fundamental contribution was the discovery, by Izrailev and
Chirikov, of the so-called stochasticity threshold (see [5, 6]). That is, the
FPU paradox disappears if the initial energy is sufficiently large, i.e., there
exists a critical energy Ec = Ec(N) such that one has a quick equiparti-
tion for E > Ec. This is illustrated in Fig. 4.5, where the time evolution of
the harmonic energies is calculates for a much larger energy than in Fig. 4.3
(E = 1).

Actually, Izrailev and Chirikov considered initial data of a certain broader
class than FPU, in that they gave the energy to a packet of modes of nearby
frequencies, considering the characteristic frequency of the packet as a param-
eter. The analog of the FPU paradox was found to occur for any frequency of
the excited packet, and in all cases the paradox disappeared above a critical
energy Ec depending on the frequency of the excited packet, and on N .

Concerning the theoretical motivation behind such a discovery of the en-
ergy threshold, a reading of the Izrailev–Chirikov paper clearly indicates that
they had in mind the results on Hamiltonian perturbation theory (KAM the-
orem) that had just been obtained in Russia by the school of Kolmogorov (see
[29]). If one considers a Hamiltonian perturbation of an integrable system, for
small perturbations the system resembles very much the integrable one: there
exist invariant tori, near the unperturbed ones, and the relative measure of
the set of such perturbed invariant tori tends to 1 as the perturbation tends
1 This paper should be compared with [27], where the first time-scale of Zabusky

and Kruskal (namely, the characteristic one for the formation of the packet) was
interpreted as the time-scale for equipartition.
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Fig. 4.5. The Izrailev–Chirikov discovery: equipartition of energy is quickly at-
tained if energy is large enough. Time-averaged harmonic energies Ek versus time
in log–log scale, still for N = 32 but now for E = 1 (i.e., ε � 0.9). Compare with
Fig. 4.3, which refers to E = 0.05 (i.e., ε � 0.0015). Taken from [26]

to 0. Continuity is thus obtained in such a measure-theoretic sense. But the
relative measure of the invariant tori is expected in general to decrease as the
perturbation is increased so that, at a large enough perturbation, the resem-
blance of the system to the unperturbed one is essentially completely lost, and
the motions are in general expected to present “chaotic” features. This is the
reason why in the FPU problem one might expect that, for sufficiently large
energies E, chaotic motions should dominate, and this actually led Izrailev
and Chirikov to the conception of the existence of a stochasticity threshold Ec.

b) The conjecture of the disappearing of the FPU paradox in the thermody-
namic limit.

The Izrailev–Chirikov discovery previously recalled, certainly constituted
an extremely relevant contribution. The authors however added something
more, by indicating a way in which the FPU paradox might be removed alto-
gether, for the purposes of statistical mechanics.

Indeed, for the aims of statistical mechanics one has to consider the case
of extremely large numbers N , i.e., formally, the limit N → ∞. So they
pointed out that one should estimate the value of the specific critical energy
εc(N) = Ec(N)/N in the limit N → ∞. Indeed, the FPU paradox would be
completely removed if one could prove that εc(N) → 0 for N →∞. In such a
way one would be guaranteed that the FPU phenomenon does not occur for
large systems at any positive specific energy ε > 0 (i.e., at any finite positive
temperature T > 0).

The authors even indicated some kind of mathematical mechanism which
should govern the vanishing of the limit-specific energy threshold. In this
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connection, a relevant role should be played by resonances (i.e., relations of
the type mω + nω̄ = 0 for two frequencies ω, ω̄, with m, n integers), because
the authors had in mind that resonances would lead to stochasticity, as was
familiar to them through the so-called Chirikov criterion of the overlapping or
resonances. On the other hand, they pointed out that, in the limit N → ∞,
the FPU system presents infinitely many resonances. So they worked out some
estimates based on this idea, for the case of initial data with an excitation
of a few high-frequency modes, and they interpreted their considerations as
suggesting that εc(N)→ 0 in that case. An analogous conclusion could not be
drawn for the case of initial data with excitations of low-frequency modes (the
case considered in the FPU work). Quite recently, their pupil Shepelyansky,
elaborating on their methods, maintained to have extended such a result to
that case too (see [7]).

Serious doubts on the significance of the criterion of the overlapping of
resonances may actually be raised (see [8]). In any case, however, one can say
that a physical conjecture had emerged, namely, that the FPU paradox may
disappear entirely in the thermodynamic limit.

4.2.4 The Result of Bocchieri et al.

Five years later (1971), in [9] Bocchieri et al. gave numerical indications in
the opposite direction: The FPU paradox should persist in the limit N →∞.
They actually performed computations for a slight modification of the FPU
model, inasmuch as they introduced a “realistic” potential of Lennard-Jones
type, namely,

V (r) = 4V0

[
(σ/r)12 − (σ/r)6

]

involving two parameters, the depth V0 of the potential well and the typical
distance σ, at which the potential passes from positive to negative values.
They considered several types of initial data with a few nearby modes ex-
cited, of low, or of high, or of intermediate frequency, and found that in a
short time equilibrium is attained (equipartition of the time-averages of the
mode-energies was obtained), if the initial energy is sufficiently large, i.e.,
for E > Ec(N) for some critical energy Ec(N), in agreement with the dis-
covery of Izrailev and Chirikov. For what concerns the dependence of the
specific stochasticity threshold εc(N) = Ec(N)/N on N , they found a large
dependence for small N , say for 2 < N < 10, whereas εc(N) was found to
be essentially constant for “large” N (concretely, in their computations, for
10 ≤ N ≤ 100). They actually found for εc(N) the “limit” value 
 (3/100)V0.
In their words: “When the energy of vibration per particle is equal or larger
than 2 or 3 percent of the potential well and the number of particles is suf-
ficiently large, one has, in time average, equipartition of energy among the
normal modes”.2 Namely,

εc 
 0.03V0 .
2 It must however be added that the authors were completely aware of the possible

relevance of the actual times of observation, because they also added: “We may
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4.2.5 The Suggestion of a Possible Physical Interpretation

At this point the situation was as follows. Izrailev and Chirikov had with an
extreme clarity indicated how one might eliminate the FPU paradox entirely,
for systems of interest to statistical mechanics: One should prove that the
specific energy threshold εc(N) = Ec(N)/N vanishes in the limit N → ∞.
Moreover, they believed to have shown that this is the case at least in the
case of high-frequency excitations. On the other hand, Bocchieri et al. had
given indications in the opposite direction. Thus, there was the problem of
which could be a physical interpretation for the apparently stationary state
exhibited by FPU, in case the indications of Bocchieri et al. were confirmed.

The idea that the relations between classical mechanics and quantum me-
chanics may be much subtler than usually believed was very much discussed
within the group of theoretical physicists in Milano, particularly under the
stimulus of Caldirola and Loinger. Thus, as one of the strongest and deep-
est manifestations of quantum mechanics in a statistical mechanics frame,
actually the one that gave rise to quantum mechanics itself, is the lack of en-
ergy equipartition at low temperatures, the systems behaving as if the high-
frequency modes were excluded from the energy sharing, quite naturally there
arose the idea that the “nonstandard” apparently stationary FPU states may
be a sort of classical analogs of quantum states. These are characterized by
the Planck spectrum EP

k given by

EP
k =

�ωk
exp(β�ωk)− 1

where � is Planck’s constant and β = 1/(kBT ) the “inverse temperature”.
In such a way, after many discussions with Bocchieri and Loinger, Galgani

and Scotti started out an investigation in which the FPU spectrum below
threshold was fitted to a Planck-like distribution EPlike

k , namely,

EPlike
k =

Aωk
exp(βAωk)− 1

,

with two free parameters A and β, having the dimensions of an action and
of an inverse temperature, respectively. The fits were made to data obtained
with the same computer program used by Bocchieri et al., in which the molec-
ular parameters m (mass of the particles), V0 and σ (the ones entering the

conclude by saying that, in the case of very low total energies, the relaxation
mechanism towards the standard Boltzmann distribution of the normal modes
may act so slowly that the coupling of the system with a thermal bath could
be very important in determining the approach of the model towards such a
distribution.” This remark, by the way, actually opens another relevant problem,
because it may happen that also the mechanisms of transfer of energy between a
FPU system and a heat reservoir are slowed down when temperature is lowered.
In fact, this actually seems to be the case.
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Lennard-Jones potential) actually considered were those of Argon, as taken
from standard available handbooks.

The result found was a rather striking one. Indeed, not only the qualitative
fit to the Planck-like law was found to be rather good, with β behaving as
expected (namely, as an inverse temperature depending only on the specific
energy ε = E/N), but it was also found that the parameter A on the one
hand was pretty constant, i.e. independent of the specific energy, and on the
other hand happened to have a value quite near to the Planck constant �.

It took some time to understand how this could have happened. The simple
reason is that A, being an action, has to be proportional to the natural action
obtained from the dimensional parameters m, V0, σ introduced in the model,
which is

√
mV0 σ. So one necessarily has

A = α
√
mV0 σ ,

where α is a pure number. On the other hand, it is well known that the
molecular parameters actually met in nature do indeed contain �, and in
particular one has, for example for the noble gases,

√
mV0 σ 
 2Z� ,

where Z is the atomic number. In conclusion, Planck’s constant had been
introduced somehow by hands in the model through the molecular parameters.
This is the way in which Galgani and Scotti came to venture the suggestion
(see [10, 11]) that, if one can prove that the FPU paradox persists in the
thermodynamic limit, then the apparently stationary FPU states may provide
a sort of classical analog to the quantum degeneration described by Planck’s
law. This idea continued to be pursued up to the present days (see [30, 31]).

By the way, it may be noted that the good fit of the FPU spectrum to
Planck’s law (suggested by the analogy with quantum mechanics) amounts to
be perhaps the first clear exhibition of the fact that, for large wavenumbers
k, the energies Ek decay exponentially fast with k, i.e., with the frequency
ωk. This fact is indeed a quite general one, the nature of which was clearly
understood analytically ten years later with the paper of Fucito et al., who,
through the intermediary of the paper of Frisch and Morf, transported to the
FPU problem general ideas of turbulence theory.

This ends the first phase of the history of the FPU problem in our personal
way of reconstructing it.

4.3 A Voice in the Desert: The Paper of Fucito et al.
(1982) and the Proposal of a Metastability Scenario.
The Work of Parisi and the Analogy with Glasses.
Relations with Turbulence Theory

In the first phase of the history we traced back in the previous section, due to
the need of concentrating our attention on the papers that are most relevant
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for our reconstruction, we already had to neglect a considerable amount of
papers, among which stay for example several ones of the late J. Ford, the
memory of whom is particularly dear to the oldest of the present authors, who
exchanged with him tenths of letters on the subject. In the same way, we are
going to neglect in the present section many other papers, including several
ones worked out by the present authors.

The next relevant step was made with the paper [13] of Fucito et al., where
both a new point of view and a new technique were introduced.

The new point of view concerns metastability and was certainly borrowed
from the frame of the theory of glasses and of disordered systems, in which
distinguished contributions had been given in Roma by Parisi. The idea is
that the FPU state is just an apparently (rather than a true) stationary one.
This is somehow at variance with the attitude of Izrailev and Chirikov, who
were apparently thinking in terms of truly stationary states; indeed they were
explicitly making reference to KAM theorem, which is expressed in terms
of invariant surfaces (that is, surfaces on which the orbits lie for all times).
Instead, in the paper of Fucito et al. reference is made to the quick formation
of a state which remains essentially undisturbed for extremely long times,
until it eventually precipitates through a “catastrophic mechanism” to the
true “final” equilibrium state.

The new technique is simply that of relating the decay of the tail of the
spectrum to the singularities of the analytic continuation of a field interpo-
lating the positions of the FPU model. This idea was borrowed from a very
interesting paper of Frisch and Morf (see [32]), the aim of which was to under-
stand certain features of turbulence theory (see [33]) as manifestations of quite
general relations between the high-frequency tail of the Fourier transform (in
complex time) of a temporal signal and the singularities of the analytical
continuation of the signal itself. By the way, it can be noted that the ex-
istence of a deep analogy between the problem of a dynamical justification
of the Boltzmann–Gibbs equipartition principle, and the general problem of
turbulence, had been clearly pointed out by von Neumann (see [34]), in the
year 1949.3

In fact, Fucito et al. were not actually studying the FPU model itself, but
rather a variant of it, namely, the so-called ϕ4-model (to be presently recalled),

3 Such an analogy between turbulence and ordinary statistical mechanics permeates
the whole paper of von Neumann. See, for example p. 445, where it is said: “The
k−5/3 law calls for an interpretation akin to (although not identical with) the
ultraviolet catastrophe of black-body radiation theory”, and reference to “non-
ergodic conservation laws” is made. See also p. 447 and finally p. 468, where it is
said: “From the point of view of statistical physics, turbulence is the first clear-cut
instance calling for a new form of statistical mechanics. . . . The existing theories.
. . . suffice to show that those laws will differ essentially from those of classical
(Maxwell–Boltzmann–Gibbsian) statistical mechanics. Thus it is certain that the
law of equipartition of energy between all degrees of freedom, which is valid in
the latter, is replaced by something altogether different in the former.”
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which was a very familiar one in field theory (and had also been studied a
little before in the spirit of the FPU problem in [35]). In fact, it turns out
that the techniques used by Fucito et al. to investigate the ϕ4-model cannot be
immediately transported to the FPU model itself (a subsequent attempt will
be mentioned later), but the transport of the global scenario proved instead to
be possible (actually in terms of the work of Zabusky and Kruskal), as shown
later by Bambusi and Ponno.

Perhaps, as a preliminary introduction to the description of the paper of
Fucito et al., it may be useful to illustrate the main phenomena understood
by them, through the Figs. 4.6 and 4.7, which refer the FPU model (with
N=127 and specific energies ε=10−4 and ε=5× 10−3 respectively). In each
figure, the spectrum (namely, the plot of the time-averaged energies Ek versus
k/N) is reported at successive times tj (with tj+1 =10 tj). From Fig. 4.6 one
clearly sees that, at any observation time, the spectrum consists of both a
packet of low-frequency modes (having a tail which decreases exponentially
fast with k/N) which essentially contains the whole available energy, and
of a complementary packet of high-frequency modes displaying an essential
equipartition of energy at a much smaller energy. One also observes that the
slope of the main low-frequency packet decreases as time increases, until it
appears to have come to a stop, remaining essentially constant (this is the
phenomenon of the apparent stationarity) during a rather long-time interval
(covering at least four orders of magnitude in the case of the figure). This oc-
curs for ε = 10−4. But if one considers a larger specific energy (ε = 5×10−3 in
the case of Fig. 4.7), then the same phenomenology is speeded up, and within
the same final observation time (t = 108), a further phenomenon is exhibited.
This is the final attainment of global equipartition, which occurs through a
quite different mechanism. Indeed, one might have imagined that the final
global equipartition be attained through a successive decreasing of the slope
of the tail. Instead, the approach occurs in the following way. The complemen-
tary packet of high-frequency modes continues to essentially display partial
equipartition at an energy smaller than that of the main low-frequency packet,
and what occurs is that the level of the energy of the complementary packet
rises as time increases,4 until global equipartition is attained. Note that, in
both figures, the scale of the ordinates is not the same at the various times.
In conclusion, one observes the existence of two different mechanisms: first,
the quick formation of a packet of low-frequency modes with an exponential
tail having an apparently stabilized slope (formation of the metastable state),
and, secondly, the final approach to global equipartition through the rising of
the equipartition level of the complementary packet.

After this introduction, let us finally come to an illustration of the paper
of Fucito et al. They consider the one-dimensional nonlinear Klein–Gordon
equation

ϕtt = ϕxx −m2ϕ− gϕ3 ,

4 Moreover, the complementary packet extends its size towards the left.
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Fig. 4.6. The spectrum at several times (10, 102, . . . , 108). First phase: formation
of the metastable state (note the change in the vertical scale of the figures). Here,
FPU model with initial data of FPU type, N = 127, ε = 1 × 10−4)

where the real, one-component, field ϕ(x, t) is defined in the interval −L/2 ≤
x ≤ L/2 with periodic boundary conditions, and m and g are positive pa-
rameters. From this partial differential equation, a discretization leading to
an analog of the FPU model is immediately obtained. The name ϕ4-model is
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Fig. 4.7. The spectrum at several times (10, 102, . . . , 108). Illustration of the final
phase following the first one, with the attainment of global equipartition (note the
change in the vertical scale of the figures). Same as Fig. 4.6, but now with ε =
5 × 10−3. The time-scale of observation is the same in both cases
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due to the fact that the only nonlinearity in the model comes from a term ϕ4

in the potential energy.
The quantity they are interested in is the analog of the spectrum previously

discussed for the FPU model, i.e., the distribution of energy (in time-average)
among the modes, as a function of time. To this end, they introduce the space
Fourier transform of the field ϕ by

ϕ̂(k, t) = (2π)−1/2

∫ L/2

−L/2
dx e−ikxϕ(x, t)

and define the power spectrum5 W (k, t) by

W (k, t) = |ϕ̂(k, t)|2 .

Notice that the continuum analog of the spectrum previously defined for the
FPU model would rather be twice the quantity k2W (k, t).

Anyway, they are interested in investigating the form of the spectrum
W =W (k) as a function of time t for large values of k. To this end they
make reference to well-known analyticity properties of Fourier transforms, and
notice: “We expect the field ϕ to reach asymptotically a thermal equilibrium
distribution, given by a Boltzmann factor e−βH for some value of the inverse
temperature β determined by the initial conditions. In this case, at values
of the wavenumber k so large that the mass and nonlinear terms of H are
negligible, one would have

W (k, t) 
 const.× k−2 . (4.3)

This behavior of W corresponds to functions ϕ(x, t) which are not differen-
tiable with respect to x. Now it is known that, since ϕ(x, 0) is analytical as a
function of x, the solution ϕ(x, t) will remain analytical at any finite time t.
Equation (4.3) can only be valid for infinite time. This means that, as time
goes on, singularities of ϕ(x, t) appear in the complex x plane which creep
towards the real axis and accumulate onto it at infinite times. We show below
that these singularities are simple poles.”

Indeed, it is well known that one may relate such singularities to the large
k behavior of W by means of the theorem of residues. Therefore one “obtains
the following asymptotic behavior of W (k, t) at large k:

W (k, t) 
 const. e−2kyS(t) ,

where yS(t) is the imaginary part of the location of the pole which lies nearest
to the real axis.”

In conclusion, “the strategy is then to evaluate the most likely value of
yS(t) by extending the approach of Frisch and Morf to a deterministic partial
differential equation.”
5 They actually call it just the spectrum.
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So, one remains with the problem of evaluating the most likely value of
yS(t). To this end, the idea was to exploit a particular feature of the ϕ4-model
in connection with initial data of FPU type, namely with small k and thus
large wavelengths. Indeed, this means that initially, and actually up to times
until which energy did not yet flow to high k modes, the profile of the field
does not present large curvatures, and thus the term ϕxx in the equation of
motion can be neglected, with the consequence that the equation of motion
reduces to an ordinary one depending parametrically on the space coordinate
x. So, up to not too large times, for any x one has an unknown ϕ = ϕ(t)
obeying the ordinary differential equation

ϕ̈ = −m2ϕ− gϕ3 . (4.4)

An analytical study of such an equation is easily performed, and this leads
to the result that, for initial data of the form

ϕ(x, 0) = A cos(k0x) , ϕt(x, 0) = 0

with k0 small, the imaginary part of the nearest pole starts descending from
infinity towards the real axis, approaching a point with imaginary part (1/k0)
ln (ma/g1/2). This is illustrated in a very beautiful way in a subsequent paper
by Bassetti et al. (see [36]), where the relevant poles for the ϕ4-model were
computed numerically by the technique of the Padé approximants.

So, there exists a first temporal phase of the dynamics, in which the spec-
trum presents an exponential decay towards the high wave-numbers k, with
a slope decreasing as

|yS(t)| = − ln (tAg1/2)/k0 .

This corresponds, for the low frequency modes, to an increase of energy as
a power of t (formation of the packet). This stage, by the way, is the analog
of the one in which, in the terminology of Zabusky and Kruskal, the third-
derivative term uxxx can be neglected, i.e.: “Initially, the first two terms (of
the KdV equation) dominate and the classical overtaking phenomenon occurs;
that is, u steepens in regions where it has a negative slope.”

One might thus expect that equipartition will eventually occur, with the
slope tending to zero (i.e., with the pole approaching the real axis). But this
is not the case. As mentioned previously, the poles do not collapse onto the
real axis, because the imaginary part tends to a finite positive value and so
the slope stops decreasing (see [36]). At this point, according to Fucito et al.
the contribution of the Laplacian starts becoming relevant, and this fact can
be looked upon as the addition of a noise to the r.h.s. of (4.4). This further
stage of the process is described at p. 710 of the paper by Fucito et al. in
terms of a probabilistic analysis performed on the harmonic chain (g = 0) in
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the limit of infinite length (L →∞), in which use is made of the known fact
that the one-point probability distribution function of a classical harmonic
field in dimension one is Gaussian. This leads to an extremely slow decrease
of the slope.

The authors then turn to a qualitative discussion of the final stage of the
process of approach to equipartition. The analysis is made in terms of the
variance σ2 of the Gaussian probability distribution function previously men-
tioned. They say: “The main effect of the nonlinear terms in this regime will
be to change the value of σ2. If σ2 were time independent,” the previous anal-
ysis “would be essentially correct. Let us distinguish between the role of short
and long wavelength modes. At the times we are interested in, most of the
energy is contained in the long wavelength modes, which may be assumed to
be in a kind of thermal equilibrium among themselves. Their contribution to
σ2 may then be considered as essentially constant in time. The short wave-
length modes will however also contribute to σ2. As long as W (k, t) is small in
the large k region, their contribution is negligible. As time goes on, however,
W (k, t) will start increasing, what will increase the value of σ2 and fasten
therefore the transfer of energy to short wavelength modes. This triggers a
catastrophic process which our analytical tools are unable to handle. We can-
not therefore draw conclusions about the behavior at very long times before
thermal equilibrium is reached.”

In conclusion, here for the first time one finds explicitly expressed the
conjecture that, for all values of the perturbation, at sufficiently long times one
will attain the standard equilibrium state, and the FPU paradox is interpreted
as corresponding to a preliminary stage of the process in which the energy,
initially given to extremely low-frequency modes, quickly flows to a larger
packet of low-frequency modes (with an exponential decay towards the high
frequencies) and remains frozen there up to an extremely long time. This is
what we informally call the metastability scenario. For what concerns the law
describing the dynamical evolution towards equipartition, in the subsequent
work [39] by Parisi numerical indications were given that the corresponding
time scale could be a stretched exponential in terms of the inverse of the
specific energy, rather than a simple exponential.

As previously pointed out, the paper of Fucito et al., with its interpretation
of the FPU paradox as a metastability phenomenon, did not produce a great
impact, and even was essentially forgotten for a long time. For example, if
one looks at the 21 papers published quite recently on the FPU problem in
a special issue that a journal devoted to it on the occasion of the 50 years
from the original work, one will find out that not one of them even mentions
that paper, apart from the papers [37, 38], where it is amply discussed (see
also [26]).

How could this have happened? In our opinion, the main reason is that at
those times the key point under discussion was the choice between the two al-
ternatives previously mentioned about the energy threshold, namely, whether
the specific energy threshold εc(N) vanishes or not in the limit N →∞; on the
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other hand, no mention of a threshold at all was made in the paper of Fucito
et al. According to them, equipartition should be attained at all energies.
This statement, that no threshold should exist, was particularly emphasized
by Parisi in [39]. So, actually, there was some misunderstanding about the
sense to be attributed to the word “threshold”. Indeed, Parisi was stressing
that energy equipartition should be attained (after a sufficiently long time) at
any specific energy, and such a conjecture is obviously opposed to the concep-
tion of a threshold, if the latter is meant as the specific energy below which
equipartition is never attained. On the other hand, there is no opposition,
if the threshold is understood in a softer way, namely, in the sense that for
smaller energies one meets with a state which is only apparently stationary,
and will later evolve, on a much longer time scale, to equipartition, i.e., to the
final “true” equilibrium state.6 However, the relation with the threshold in the
sense of Bocchieri et al. was not discussed in an explicit way. In our opinion,
this is the fact that generated some confusion. The situation was finally clari-
fied in the paper of Berchialla et al. (described in a subsequent section), where
a clear exhibition was given of the fact that two well distinct time-scales of
relaxation exist, but only below a certain critical specific energy, which could
thus be interpreted as the threshold previously discussed by Izrailev–Chirikov
and by Bocchieri et al.

We mention now the very few papers in which the work of Fucito et al.
was discussed.

The previously mentioned paper [36] somehow constitutes an appendix
to the paper of Fucito et al., because it reported numerical computations of
the relevant poles in the ϕ4-model, showing a very good agreement with the
theoretical predictions and some further details. Something analogous can be
said of the paper [40], still devoted to numerical investigations on the ϕ4

model. Here, following Frisch and Morf, the analysis concerns the statistical
aspects of the field ϕ, which is shown to present typical non-Gaussian features.
By the way, it may be worth mentioning that analogous indications of non-
Gaussian behaviors were also reported much later for the process of energy
exchanges of the internal degrees of freedom of diatomic molecules produced
by atomic collisions (see [41]).

The suggestion that a description analogous to that of Fucito et al. for
the ϕ4-model could be given also for the FPU model was first advanced and

6 In the words of Fucito et al.: “One of our main results is that the system reaches
equilibrium with a logarithmic dependence on t, so that the nonequilibrium spec-
trum may persist for extremely long times, and may be mistaken for a stationary
state if the observation time is not sufficiently long”. By the way, one also finds
here the words: “It is amusing to remark that the quasi-equilibrium distribution is
similar to Wien’s law for black body radiation with a slowly varying Planck’s con-
stant, a statement which is clearly inspired by the possible physical interpretation
proposed in the work [10].
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discussed in [42],7 (see also [43])8 in which numerical computations were per-
formed on the FPU model itself (actually on the so called β-model, i.e., the
one with α = 0). The previously mentioned “slope” of the straight line de-
scribing, for large k, the exponential decay of Ek versus k in semi-log scale was
investigated and was shown to stop decreasing, but the further evolution was
not investigated. The accent was rather put on the fact that a quick approach
to equilibrium occurs only for high enough energy, and the authors even added
the comment (p. 3550): “The numerical results that we have described in the
present section yield to the interesting conclusion that a threshold value exists,
below which the equipartition of energy is never reached.”

The same problem was rediscussed two years later (see [44]), still for the
FPU β-model. The accent was still put on the existence of an energy thresh-
old, trying to make a decision between the conjecture of Izrailev–Chirikov and
that of Bocchieri et al. (that was there called the Galgani conjecture), and
the authors said: “For the N dependence our results seem to be unquestion-
able and in contrast with the existing theoretical predictions” (of Izrailev and
Chirikov). The point of view of Fucito et al. was mentioned in the conclu-
sions, where they added the comment: “But as far as the time dependence
is concerned we cannot conclude that the threshold does not vanish as t ap-
proaches ∞ . . . The situation can be likened to the very slow relaxation be-
havior in disordered systems, where the evolution towards ‘equilibrium’ takes
place through metastable states, approached at different time scales.” Analo-
gous conclusions were reached for the FPU α-model in [45].

4.4 Other Pathways

The metastability perspective, initiated with the work of Fucito et al., was
finally recovered 20 years later, with the paper of Berchialla et al. that will
be illustrated in the next section. Many more works were written down in
the meantime by several authors (for example Kantz et al. entered the game),
with an attention to several interesting problems. We cannot follow them here
in detail, but it seems to us that, apparently, no reference to the metastability

7 From the technical point of view, difficulties were met in trying to describe the
motion of the poles through a direct transport of the method used by Fucito
et al., which was a very special one devised for the ϕ4-model. In fact the authors
proposed somehow a partial differential equation which, as we now understand,
can give a good agreement only for extremely short times, the ones corresponding
to the first stage described by Zabusky and Kruskal, because it does not even
prevent the formation of a discontinuity (in the terminology of Fucito et al., it
does not prevent the falling of the poles on the real axis), and so does not lead
to a blocking of the decay of the slope in the spectrum (stage II of KZ).

8 Here, the idea is suggested that in the α–β model the β-term dominates over the
α one, also at very low energies.
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perspective can be found there. In the present section, we limit ourselves with
a short survey of some other problems that were dealt with.

4.4.1 The Idea of Long Relaxation Times, Boltzmann and Jeans,
Nekhoroshev and Landau-Teller

In the meantime, people had started becoming familiar with the fact that the
relaxation times to equilibrium can actually be extremely long (see [46]). This
in fact had been much discussed by Boltzmann himself and by Jeans, who had
conceived of explaining by such a mechanism the observed lack of equipartition
in nature (see the quotations in [47]). The same fact was later understood in
terms of perturbation theory through the work of Nekhoroshev (see [48]),
and through a reconsideration of the work of Landau and Teller of the years
30s on the exchanges of energy of the internal degrees of freedom in atomic
collisions (see [49]). Problems of this kind actually became very popular and
were much investigated, and would deserve a long discussion. Here we only
remark that, while on the one hand the existence of long relaxation times was
well understood, on the other hand there was no completely clear awareness
of the fact that in a very short time some kind of equilibrium (or apparent
equilibrium, or metaequilibrium) is attained (see however the works [50, 51]).
Such a quick approach to a metaequilibrium state corresponds to what we
now call the quick formation of a packet (presenting a partial thermalization),
which is the one accounted for by the first two stages of Zabusky and Kruskal,
and of Fucito et al.

4.4.2 The Works around Pettini

The existence of long relaxation times for the FPU problem (and also for the
ϕ4-model) in the spirit of Nekhoroshev’s theorem was first discussed and ex-
hibited by Pettini and Landolfi (see [52]). Indeed, already in the abstract of
their paper, they make the following quite clear statement: “Below a critical
value εc . . . of the energy density ε, the relaxation time τR is found to follow
a ‘Nekhoroshev-like’ law, i.e., τR = τ0 exp(ε0/ε)γ”, and also add: “A remark-
able difference with respect to Nekhoroshev’s theorem (where the exponent γ
scales as 1/N2) is the N independence of numerical experiments results. An
important consequence of this fact is the existence of nonequilibrium states of
arbitrary lifetimes also at large N values. On the other hand, at high-energy
densities (ε > εc), τR is almost independent of ε”. Such a scenario of Pettini
and Landolfi seems to perfectly agree, actually anticipating it, with the one
described in the next section along the lines of the work of Berchialla et al.
However, from some subsequent works (see, for example the review paper
[53]) one may have the impression that the authors rather started adhering
to the scenario of Izrailev and Chirikov. We hope to come back to this point
on another occasion.
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In some subsequent papers (see [54]) a very ingenious method, based on
certain considerations on the geometry of phase space, was devised which
allowed Pettini and his collaborators to provide a semianalytical estimate of
the maximal Lyapunov Characteristic Exponent as a function of the specific
energy εc in the thermodynamic limit. This result, although not yet completely
cleaned up from an analytic point of view, constitutes in our opinion one of
the most relevant contributions to the subject. The curve of the maximal LCE
versus the specific energy ε had been numerically investigated by Casartelli
et al. in the paper9 [56] for the FPU model with Lennard-Jones potential.
Later, in their paper [52], Pettini and Landolfi found the interesting result
that such a curve presents a well-marked knee at a certain value of ε. In fact,
an analogous remark had been made three years before in a paper of Butera
and Caravati (see [55]) for a plane model of rotators (the so-called O(2) planar
Heisenberg model), in which the position of the knee had been associated to
the presesnce of a certain phase transition (of Kosterlitz and Thouless). For
previous works on the model of rotators see [57] and [58].

4.4.3 Metastability and Specific Heats

A very interesting discussion had also been started concerning estimates for
the fluctuations of energy in subsystems of the FPU model. The aim was to
understand whether the FPU model may be of interest in connection with
the problem of the specific heats. In order to obtain some estimates through
numerical studies on isolated systems, without having to make recourse to an
interaction with a heat reservoir, the attention was addressed to the energy
fluctuations of a subsystem of the FPU system of interest: the aim was to
compare the fluctuations computed as time-averages with those expected at
equilibrium, since the relation of the latter ones with the specific heat is well
known. Two apparently opposite results had been obtained in the papers
[59, 60] (by Livi et al. and by Perronace and Tenenbaum, respectively). The
difference could be explained as due to the fact that two completely different
kinds of subsystems had been considered in such papers: a spatial piece of
the FPU string in [59], where the time-averages were found to agree with the
equilibrium expectations, and a packet of modes of nearby frequencies in [60],
where an analog of the FPU paradox was observed, because the time-averages
were apparently found to tend to zero as temperature decreases.

So, there naturally arose the idea of eliminating all the problem of the
good choice of the subsystem, by estimating the specific heat directly through
the energy actually exchanged between the whole FPU system and a heat
reservoir (see [15] by Carati and Galgani). Obviously this in turn opens the
new problem which might be considered to be a good model for the energy
exchanges with the reservoir, a problem we shall not discuss here. We just

9 This, by the way, is the paper where the now familiar technique of computing the
maximal LCE was first introduced.
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limit ourselves to mention that in such a way some analogies between the
FPU system and the glasses were pointed out, and this fact was instrumental
to rediscover and recover the metastability perspective introduced by Fucito
et al. Moreover, another interesting fact was observed. Namely, something
analogous to the formation of a low-frequency packet (which is a standard re-
sult for long-wavelength initial data) occurs even if one starts up with initial
data extracted from a Boltzmann–Gibbs distribution at a certain temperature
(and so essentially with equipartition of energy among the modes). Indeed it
was found (see [16]) that, if the FPU system (with initial data of the just
mentioned type) is put in contact with a heat reservoir having a slightly dif-
ferent temperature, then only a small packet of low-frequency modes does
manifest a quick reaction to the reservoir, attaining equipartition at the tem-
perature of the latter, whereas the high-frequency modes do not manifest any
reaction at all. Presumably, they too will much later attain global equiparti-
tion, in analogy with what occurs for an isolated system with long-wavelength
initial data.

This fact naturally leads to expect (see [31, 60]) that metastability phe-
nomena may show up in actual measurements of the specific heats (for example
of crystals) at low temperatures, more or less in the spirit of the rationale of
the time-dependent specific heats, as discussed for example by Birge and Nagel
(see [61]). On this very interesting problem we plan to come back elsewhere.

4.4.4 Towards the Natural Packet through Resonance: the FPU
Model with Alternating Masses

It will be shown later that, in order to understand the quick formation of an
apparently stationary state, a key point is played by some relevant resonances.
Such a role, already pointed out for the FPU problem in the pioneering work
of Ford of the year 1961 (see [62]), became particularly evident when a mod-
ification of the original FPU model was studied (see [63]). We refer to the
so-called FPU model with alternating masses which is very familiar in solid
state physics, namely, the one in which the successive material points of the
FPU chain have masses m,M,m,M, . . . with m < M . The main qualitative
consequence of such a modification is that the “dispersion relation”, namely,
the function ω = ω(k), presents now two branches: the “acoustical” one (em-
anating from near the origin) and the “optical” one, characterized by larger
frequencies. The separation between the two branches becomes larger and
larger (with the optical one tending to become a horizontal curve, i.e., with
all frequencies equal) as the ratio M/m of the two masses is increased. So
one meets here (for M/m large) with two clearly distinct subsystems, each of
which can be essentially considered as completely resonant, being character-
ized by essentially just one frequency. Resonant systems had been previously
studied in the frame of Nekhoroshev theorem (see [64]), and it had been well
understood that chaotic motions in general occur within each single resonant
subsystem, whereas the exchange of energy between the two subsystems is
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in general extremely slow. Furthermore, the strong dependence of the results
on the number of elements constituting a subsystem was almost completely
eliminated. Notice that the dependence of the estimates on N in the general
case is instead quite heavy, and this fact was often interpreted as indicating
that “chaos should prevail” in the thermodynamic limit.

4.5 The Resurgence of the Metastability Perspective,
and Its Compatibility with the Existence of a Specific
Energy Threshold: The Natural Packet and the Two
Relaxation Times

A very clear numerical illustration of the phenomenon of metastability, ex-
hibiting on the one hand the existence, at low energies, of two well separated
time-scales (i.e., the quick formation of a “natural packet” which persists up to
very long times, when the final relaxation to equipartition occurs), and on the
other hand the existence of a stochasticity threshold in the sense of Bocchieri
et al., was given in [14] by Berchialla et al. The main underlying idea was to
measure the width of the packet that is quickly formed by the dynamics it-
self when the energy is initially given to the mode of lowest frequency. While
in the modified FPU model with alternating masses one was meeting with
two “fixed” packets, here the packets are naturally formed by the dynamics
itself (think of the first figure of the original FPU work), and their width is
expected to depend on the initial energy. By the way, here too one meets
with a resonance phenomenon, because the low frequencies are given in a first
approximation by ω(k) 
 kπ/(N + 1), which is just the familiar resonance
relation of the continuous linear string. The idea of taking into account such
a typical resonance of the low frequency modes, already indicated by Ford,
was later reconsidered by Shepelyansky and by Ponno (see [7, 8]).

The first relevant result of the paper of Berchialla et al. is illustrated in
Fig. 4.8 (which we familiarly refer to as “the shower”). In abscissas one has the
time and in ordinates the energy. Here the results refer to a FPU system with
N = 15, with the energy given initially to the lowest frequency mode. Having
fixed the initial energy (and thus a line parallel to the axis of the abscissas), the
various different symbols give an estimate of the time at which the various
other modes start sharing energy with the first mode. The correspondence
between the symbols and the mode numbers is not explicitly indicated in the
figure, but in general it turns out that the times at which the various modes
“enter the packet” are increasing with the mode number k. So one clearly sees
that, for a sufficiently low energy, in a rather short time a packet of modes is
formed which share the energy among themselves, then follows a rather large
interval of time in which “nothing happens”, until eventually the subsequent
modes start entering the packet, and such an energy cascade is not interrupted
until all modes did enter the packet. This is the time at which equipartition
is attained.
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Fig. 4.8. The “shower”. Here N = 15, and the energy was given initially just
to the first mode. Having fixed an initial energy (and thus moving on a horizontal
line), the various symbols give the times at which the other modes start sharing a
(suitably defined) significant amount of the available energy. Such a time is found
to be an increasing function of the mode number k, so that in the figure the mode
number should be thought as increasing in going from left to right. The existence of
two time-scales below a certain critical energy is clealy exhibited. Above the critical
energy, instead, only one time-scale exists, which leads directly to equipartition.
Taken from [14]

The relevant point is that such a separation of two time scales occurs only
below a certain energy (namely, the one where the two inferior branches of the
shower join); this just corresponds to the critical energy Ec of Bocchieri et al.,
because for higher energies the packet which is quickly formed covers all the
available frequencies, i.e., there occurs a quick attainment of equipartition.
Notice that the time needed for the quick formation of the low-frequency
packet just below the critical energy is smaller than the time required for
getting equipartition at larger energies.

Two more phenomena were also exhibited. The first one is that the width
of the packet is a function of the specific energy, and is independent of N . The
subtle point here is that such an independence with respect to N is exhibited if
the width of the packet is plotted versus a quantity which is itself independent
of N , and such a quantity is the frequency ω∗ of the maximal mode included
in the packet (or equivalently the corresponding value k∗/N). This is shown in
Fig. 4.9, where the frequency ω∗ defining the width of the packet (estimated
in a suitable way) is plotted versus the specific energy ε. One very well sees
that the data correspond to a curve ω∗(ε) = c ε1/4 (with a certain constant
c), which by the way is just the law obtained later analytically. Notice that
the data refer to N ranging from 8 to 1023. Notice also that the value of ε for
which one has ω∗ = 2 (the maximal available frequency) provides a definition
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Fig. 4.9. Width of the “packet” (in frequency) versus specific energy, for N ranging
from 8 to 1023. From [26] (adapted from [14])

for the critical specific energy in the sense of Bocchieri et al., and that this
quantity too is independent of N (i.e., pertains to the thermodynamic limit).

The second phenomenon concerns the way in which the time of formation
of the packet depends on the initial conditions. One meets here with a problem
that had been raised by Livi et al. (see [65]), who had pointed out that some
relevant relaxation times were proportional to N if the energy was initially
given to just one mode, whereas the behavior was quite different for other
kinds of initial conditions. This fact is confirmed by Fig. 4.10, where the time
of formation of the packet is plotted versus N for several kinds of initial
conditions. Here one sees that such a time is proportional to N if the energy
is given initially to the first mode. However, one also sees that the time is
essentially independent of N if the energy is given initially to a packet of
modes proportional to N , i.e., to a small packet extending to a maximal
frequency Ω.

It should be mentioned that very interesting numerical informations on
the formation of the packet had also been obtained by Biello et al. (see [66]),
who were able to give quantitative estimates both of its width ω∗ (namely,
ω∗ 
 ε1/4) and of its time of formation tf (namely, tf 
 ε−3/4).

We now briefly mention the results of three subsequent papers that are
strictly related to the work of Berchialla et al., namely, the papers [67], [68] and
[69]. In [67], the attention is addressed to the second time-scale τeq, namely the
final time-scale to equipartition, which is shown to be of stretched exponential
type, precisely, of the form τeq 
 exp(ε−1/4), at variance with the power law
τeq 
 ε−3 that had been suggested in [70]. Moreover, this result appears to be
independent of N (for N large enough). This is clearly exhibited in Fig. 4.11,
which reports the time of relaxation to the final global equipartition as a func-
tion of N , for two values of the specific energy ε. An analogous result was later
obtained in [68], where the law τeq 
 exp(ε−1/5) was found for initial data
with excitations of the high-frequency modes. By the way, in the latter paper
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an astute way was devised for exhibiting the analog of the shower when one
deals with initial data of any type (and not just with excitations of the low-
frequency modes). Finally, in the paper The figure showd that the relaxation
time tends to a constant (depending on ε) as N increases, thus supporting te
conjecture that the exponential law remains valid in the thermodynamic limit
[69]. a vivid illustration (through projections of surfaces of section) is given of
the way in which the final global equilibrium is attained. In fact, the system
appears to be successively trapped into well different metastable regions, in-
stead of finally merging, from some “ordered” region, to some “chaotic” one,
as had been sometimes suggested.

4.6 New Analytical Contributions

We finally come to a brief illustration of some analytical developments that
were obtained quite recently.

(a) Solitons recovered : The first relevant point is that soliton theory itself
started to be reconsidered as a useful tool for analytical studies on the
FPU problem. Indeed, in [71] it was shown that the form of the Fourier
spectrum of the packet of the metastable state of the FPU system is
explained in terms of KdV solitons. In particular, quantitative estimates
both of its width (as ε1/4) and of its time of formation (as ε−3/4) were
given. Soliton theory within the FPU problem had in fact been previously
reconsidered in [72].

(b) Shepelyansky and Ponno: As first pointed out by Ford in his pioneering
work (see [62]) of the year 1961, in order to explain the short-time dy-
namics of the modes (in particular, the quick formation of the packet, as
we now say) one has to take into account the fact that the low-frequency
modes are almost completely resonant. This idea was reconsidered by She-
pelyansky (see [7]), who tried to deduce from it that the specific energy
threshold tends to zero for N → ∞, for initial long-wavelength excita-
tions.10 In [8], it was shown instead that the resonant normal form actually
explains the formation of the metastable packet, and moreover that both
its width and its time of formation are functions of the specific energy, ex-
actly in the forms previously obtained (as ε1/4, and as ε−3/4, respectively)
in [71] through soliton theory and in [66].

10 In the Introduction of the paper, the result of Izrailev and Chirikov is mentioned:
“According to Izrailev and Chirikov, in the case of low-mode excitation (nonlinear
sound waves) the critical energy increases with the number of oscillators in the
chain (or the energy per oscillator is constant)”. It is then discussed how such
authors had neglexted to take into account certain resonances in their semiana-
lytical estimates, with the conclusion: “Such resonances not being considered by
Izrailev and Chirikov give a sharp decrease of the chaos border in energy which
goes to zero with the increase of the number of particles in the lattice. In this
sense the long-wave chaos can exist for arbitrarily small nonlinearity”.
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(c) Bambusi and Ponno, and the KdV equation as the resonant normal form
for the FPU α-model : In [17, 38, 73, 74] the attention was given to the
resonant normal form of the FPU model for long-wavelength initial data.
In [7] and [8], such a normal form had been expressed in terms of the mode
coordinates, whereas in the new papers it was pointed out that, if such a
normal form is read in terms of the particle coordinates in the continuum
interpolation and in the thermodynamic limit, then the normal form is
nothing but the KdV equation itself (actually, a pair of such equations, in
agreement with the time reversal symmetry of the FPU system). In such a
way, the privileged role of the KdV equation for the FPU system with long-
wave initial data was recovered, with moreover an understanding of the
time-scale of its validity. This happened after a previous understanding, by
Bambusi et al., that the nonlinear Schroedinger (NLS) equation plays an
analogous role of normal form in the FPU problem with short-wavelength
initial data (see [75]).

(d) Perturbation theory in the thermodynamic limit : The analytical results of
Bambusi and Ponno in [17] could be obtained only for an extremely special
class of initial conditions, in which exactly one low-frequency mode was
excited, at an energyE proportional to N , and so at a given specific energy
ε = E/N . Only in this sense does the result hold in the thermodynamic
limit. It may be conjectured that such a limitation is only a technical one,
to be hopefully removed in the future.

This fact rises the general problem of whether it is possible to extend
the methods of classical perturbation theory of nearly integrable Hamiltonian
systems to the thermodynamic limit (N → ∞ with a nonvanishing specific
energy ε). The presently available techniques do not allow it, as they apply
only to finite N (or to any N , but with a bounded energy E, i.e., with a
vanishing specific energy ε = E/N in the limit N → ∞; see [19]). It was
proved quite recently by one of the present authors (see [18]) that a rather
simple modification of the known techniques actually allows one to do so. This
is obtained at the cost of weakening the results, by renouncing to control all
the orbits in phase space (a control which usually is obtained by making use,
in the estimates, of the sup norm), and looking instead for results holding
only in the mean. This is analogous to the way in which the von Neumann
ergodic theorem can be considered as a weaker version of the Birkhoff ergodic
theorem, although it still keeps all the relevant physical significance of the
result (as particularly pointed out in [25]).

4.7 Conclusions

In the present review, we have illustrated the relevance of a metastability sce-
nario for the interpretation of a large part of the results on the one-dimensional
FPU model, in the thermodynamic limit. Such a scenario involves two well
separated time-scales for the approach to equilibrium, below a critical specific
energy.



184 G. Benettin et al.

It was also mentioned that too little information is presently available for
the case of dimension two and especially for the physically significant case
of dimension three. Two “simple ” possibilities can be conceived. The first
one is that the metastability scenario will be proved to be incorrect in the
“physical case” of dimension three, in the sense that at any finite specific
energy (or temperature) the time-averages of the relevant quantities present a
quick relaxation to their equilibrium values. In such a case the “FPU paradox”
will turn out to have been removed completely in the thermodynamic limit.
This would provide a proof of the conjecture advanced long ago by Izrailev and
Chirikov, at least in the way many people understand it, namely as claiming
that no “FPU physical phenomenon” essentially exists.

The second “simple” possibility is that the metastability scenario as de-
scribed above (with two well separated time-scales) will be proved to be cor-
rect. In such a case, in a sense the FPU paradox will still turn out to have
been removed, because at any temperature the equilibrium state is finally at-
tained. But some paradox will still remain. Indeed it will turn out that, below
a certain critical specific energy (i.e., below a certain critical temperature), the
FPU model predicts the existence of some metastable state which, for quite
long times, may be practically indistinguishable from a true equilibrium state,
although providing a statistics quite different from the standard equilibrium
one (in this connection see [76, 77, 78]). So one would remain with the prob-
lem of ascertaining whether such a physical prediction is in agreement with
the observations or not. We are particularly thinking of possible metastability
phenomena in the measurements of specific heats at low temperatures, in the
spirit of the rationale of the time-dependent specific heats (see [61]).

Naturally, other more complicated scenarios can be conceived. For exam-
ple, there could exist a “cascade” of growing-time scales of different orders of
magnitude as N → ∞, and this, in a larger scale, could look like a continu-
ous growth (we thank a referee for kindly pointing this out to us). To what
physical phenomena would such a situation possibly correspond, is not clear
to us.
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Abstract. We consider the FPU model with nonlinearity starting with terms of
order n ≥ 3. We compute the resonant normal form in the region where only one
low-frequency mode is excited and deduce rigorous results on the correspondence
between the dynamics of the normal form and that of the complete system. As
n varies, we give a criterion in order to deduce whether the FPU phenomenon
(formation of a metastable packet of modes) is present or not. The criterion is that,
if the normal form equation has smooth solutions then the FPU phenomenon is
present, while it is absent if the solutions of the normal form equations have blow
up in a finite time. In particular the phenomenon should be present for n ≤ 5 and
absent for n ≥ 7.

5.1 Introduction

In the present contribution some analytic results on the Fermi–Pasta–Ulam
(FPU) problem are presented. Our purpose is to use the methods of rigorous
perturbation theory for infinite dimensional Hamiltonian systems to explain
some of the features of the FPU phenomenology. In particular we have the
following results:

(1) For low-energy and long-wavelength initial data, canonical perturbation
theory allows us to put the Hamiltonian of the system in resonant normal
form up to a small remainder. The equations of motion of the normal
form consist of two partial differential equations (PDEs) which describe
well the dynamics of the system within a certain time-scale.

(2) In the case of the so-called FPU α-model, the normal form equations are
two uncoupled Kortweg–de Vries (KdV) equations. Thus all the remark-
able features of the KdV equation turn out to pertain, in an approximate
way, also to the FPU model. In particular the α-model will behave as an
integrable system over the time-scale of validity of the normal form. We
emphasize that, as predicted in [1], such a time-scale is of order ε−3/4,
ε being the specific energy (i.e. the energy per degree of freedom) of the
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system. Such a time-scale has to be considered as short in connection
with the problem of thermalization. Indeed, thermalization, at least in
dimension one, seems to take place on a much longer time-scale, namely a
“Nekhoroshev-like” stretched exponential of 1/ε. So the first conclusion,
at least from a rigorous point of view, is that KdV is relevant for the dy-
namics of the FPU (as heuristically predicted since the pioneering works
of Zabusky and Kruskal [2]) on short, power law time-scales, as opposed
to the longer, exponential ones over which one can observe relaxation to
equilibrium.

(3) The KdV equation allows us to explain (rigorously), in the case of the
α-chain, the phenomenon of formation of the packet [3, 4, 5, 6, 7, 8],
namely the fact (first observed by Fermi, Pasta and Ulam themselves)
that, if one low-frequency mode is initially excited, then the energy quickly
flows to a small packet of modes whose energy, in time average, decreases
exponentially with the mode index. The packet turns out to be stable over
the time-scale covered by the normal form, namely ε−3/4.

(4) The situation of having a resonant normal form which is integrable seems
to be quite exceptional: indeed, if one introduces action-angle variables
one sees that the normalization procedure consists in eliminating just
one among infinitely many angles; thus the system in normal form is in
principle expected to have only one integral of motion independent of the
energy. Instead, the KdV has a complete set (infinitely many) of integrals
of motion in involution! We are thus naturally led to study the β-model
and systems with perturbations of higher order, in order to check the
occurrence and the relevance of integrability. The normal form of the
β-model turns out to consist of two uncoupled modified KdV (mKdV)
equations which are integrable too. The same qualitative behavior of the
α-model is thus expected also in the β-model (a rigorous proof is still
missing due to the lack of a deeper knowledge of the mKdV equation).

(5) The situation changes with higher order FPUs where the normal form
equations we get are higher order generalized KdVs (gKdV) that are no
longer integrable. One is thus naturally led to ask whether the FPU phe-
nomenon persists in such cases, and whether the integrability of the nor-
mal form plays a fundamental role or not. We think that the answer is no,
and that there should be a weaker property entraining the formation of
a metastable packet of modes. We guess that such a property actually is
related to the smoothness of the solutions of the Cauchy problem of the
normal form PDEs. In particular if the solutions of the PDEs under inves-
tigation have blow up in a finite time we guess that metastability should
be lost, while we think that the phenomenon of formation of a metastable
packet of modes should be present in all models that do not display blow
up. We also give a heuristic argument for that.
For the case of one-dimensional FPU chains it turns out that the metastable
packet is expected to exist in the case of nonlinearity of degree less than
or equal to 5, while it is expected not to exist when the nonlinearity
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has degree higher than or equal to 7. The case of nonlinearity of order 6
is critical and therefore the existence of the packet strongly depends, in
principle, on the initial conditions.

5.2 Normal Form

Consider the Hamiltonian system

H(q, p) =
N−1∑

j=−N

p2
j

2
+ U(qj+1 − qj) , (5.1)

U(x) =
x2

2
+

xn

n
, n ≥ 3 (5.2)

qj+2N = qj , pj+2N = pj , (5.3)

describing a periodic chain of 2N particles interacting through nonlinear
springs. The canonical variables are q = (q−N , . . . , qN−1), p = (p−N , . . . , pN−1).
Hamiltonians of the form (5.1) were first introduced and studied by Fermi,
Pasta and Ulam (FPU) in the case n = 3, 4; such model Hamiltonians are
commonly referred to as FPU models (in the case n = 3 and n = 4 one refers
to the α-model and β-model, respectively). Due to the periodic boundary con-
ditions (5.3), the total linear momentum of the system is preserved. So one
can restrict oneself to the case

∑
j pj =

∑
j qj = 0.

The equations of motion associated with (5.1) are given by

q̈j = qj+1 + qj−1 − 2qj + (qj+1 − qj)n−1 − (qj − qj−1)n−1 (5.4)

We are interested in initial data in which only one Fourier mode is excited,
say the one with wave number k0 � N .

Remark 5.1. In this case the dynamics is equivalent to the dynamics of a
shorter FPU chain; in particular, if k0 divides N it turns out that the dynamics
is equivalent to that of a chain of length 2N/k0, in which only the first Fourier
mode is excited. More precisely, the solution lies on an invariant submanifold
on which the Fourier modes with index which is not an integer multiple of k0

(modulo N) are exactly zero (see [9]).

We will use as a small parameter

μ :=
k0

N
. (5.5)

To begin with, we construct a canonical transformation setting the system
in normal form in the region of long-wavelength states. We rewrite the FPU
system in terms of the new variables rj defined by
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rj := qj − qj−1 ,
∑

j

rj = 0 ; (5.6)

the change of variables q → r is well defined and invertible. Introducing also
the discrete Laplacian Δ1 defined by

(Δ1r)j := rj+1 + rj−1 − 2rj , (5.7)

the FPU equations take the form

r̈ = Δ1(r + rn−1) . (5.8)

We introduce now an interpolating function r = r(x, t) for the sequence rj ,
namely a (smooth) function with the property that the sequence

rj(t) ≡ r(j, t) (5.9)

fulfills the FPU equations (5.8). Moreover we will assume that the function
r(x, t) is 2N/k0 ≡ 2/μ periodic and has zero average. Thus we postulate that
the function r fulfills (5.8) with an obvious extension of the definition of Δ1

to smooth functions.
We remark that up to now we did essentially nothing: the continuous sys-

tem we got is equivalent to the original FPU system.
Since we are interested in states with long wavelength and small amplitude

we will look for solutions of the form

r(x, t) = μ
2

n−2u(μx, μt) ; (5.10)

it turns out that such a re-scaling gives a correct balance between dispersive
and nonlinear terms in the equations of motion (see below). It has to be
remarked at this stage that by the choice (5.10) one links the small parameter
μ defined by (5.5) to the specific energy of the system (energy per degree of
freedom). Indeed, from

ε ≡ E

2N
∼ 1

2N

∑

n

r2n = μ
4

n−2
1

2N

∑

n

u2(μn) ,

it follows that
μ ∼ ε(n−2)/4 . (5.11)

We remark that if u is a smooth function (e.g. analytic) then it turns out that
the Fourier coefficients of r and therefore of the original variables of the FPU
model will decay fast (e.g. exponentially) with the index k. Correspondingly,
one expects that it should be possible to approximate the frequencies of the
FPU with their low-mode expansion. Indeed, when k/N is small, one has

ω(k) ≡ 2 sin
(
kπ

2N

)
=
kπ

N
− k3π3

24N3
+ O((k/N)5) . (5.12)
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By substituting (5.10) into (5.8) one gets the equation of motion for u,
namely

uττ = μ−2Δμ

(
u+ μ2un−1

)
. (5.13)

Here Δμ is the difference operator

(Δμu)(y) := u(y + μ) + u(y − μ)− 2v(y) . (5.14)

Notice that (5.13) is written in terms of the rescaled variables y = μx and
τ = μt introduced in (5.10); moreover, since the function r(x) is 2/μ-periodic,
then the function u(y) is 2-periodic. Equation (5.13) is Hamiltonian with
Hamiltonian function

K(u, v) =
∫ 1

−1

(
−vΔμv

2μ2
+
u2

2
+
μ2un

n

)
dy , (5.15)

where v is the variable canonically conjugated to u. From now on we will
study the system (5.15).

Inserting the formal expansion of the operator Δμ (5.14), given by

Δμ

μ2
= ∂2

y +
μ2∂4

y

12
+ O(μ4) , (5.16)

into the Hamiltonian (5.15), one gets

K = H0 + μ2P +R1 , (5.17)

where

H0(u, v) :=
∫ 1

−1

[
v(−∂2

yv) + u2

2

]
dy =

∑

k 	=0

û2
k + (kπ)2v̂2

k

2
, (5.18)

P (u, v) :=
∫ 1

−1

[
−
v∂4
yv

24
+
un

n

]
dy , (5.19)

and R1 ∼ O(μ4) is the remainder of the expansion. In (5.18) ûk and v̂k are
the Fourier coefficients of u and v, respectively. More precisely, the Fourier
coefficients of a (zero-average) function u(y) are defined here as

u(y) =
1√
2

∑

k>0

[ûk cos(πky) + û−k sin(πky)] (5.20)

and clearly v̂k is the momentum conjugated to ûk.

Remark 5.2. The equations of motion of H0 + μ2P , in second-order form, are

uττ =
[
u+ μ2 1

12
uyy + μ2un−1

]

yy

, (5.21)
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which is a generalized Boussinesq (gB) equation, sometimes considered as
a starting point in approaching the FPU problem. In particular the (5.21)
has been shown to be integrable in the case n = 3 (even though the actual
integration is non-trivial); in the other cases the equation is non-integrable.

The strategy for studying the dynamics of (5.17) is well known from the
theory of finite dimensional systems: substitute P with its average 〈P 〉 with
respect to the flow of the Hamiltonian vector field XH0 , and study the dy-
namics of this system, then use some rigorous method in order to prove that
the solutions of the averaged system, namely of the system

H0 + μ2〈P 〉 , (5.22)

are close to the solutions of the original one at least over some long time-scale.
We start now by giving a precise definition of 〈P 〉. So we consider the

equations of motion of H0, i.e.
{
uτ = −∂2

yv ,
vτ = −u ⇐⇒

{
dûk

dτ = v̂k
dv̂k

dτ = −(πk)2ûk
. (5.23)

Denote by (u, v) = Ψτ (u0, v0) the solution of the Cauchy problem with initial
datum (u0, v0), which in terms of Fourier coefficients is given by

ûk(τ) = (̂u0)k cos(πkτ) +
(̂v0)k
kπ

sin(πkτ) , (5.24)

v̂k(τ) = (̂v0)k cos(πkτ) − kπ(̂u0)k sin(πkτ) . (5.25)

In the following we will show that there is a third representation in which
the computations are particularly simple. In order to keep in mind that all
we will do is completely independent of the coordinate system, we will use
the abstract notation z for a phase space point, namely for the pair (u, v).
Correspondingly, the flow of H0 will be denoted by Ψτ (z)

Definition 5.1. The average of P is defined by

〈P 〉(z) :=
1
2

∫ 2

0

P (Ψτ (z))dτ (5.26)

Remark 5.3. In the jargon of Birkhoff normal forms one usually says that 〈P 〉
is the resonant part of P , and indeed, when expressed in the complex variables
usually employed in order to solve the homological equation it contains all
(and only) the resonant monomials present in P .

As anticipated above the explicit computation of 〈P 〉 (which is very com-
plicated in Fourier space) is simpler in different variables that we presently
introduce. Consider the non-canonical change of variables

ξ :=
u+ vy√

2
, η :=

u− vy√
2

. (5.27)
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Correspondingly the equations of motion take the form

dz
dτ

= J ∇H(z) ⇐⇒
(

ξτ = −∂y
δH
δξ

, ητ = ∂y
δH
δη

)
, (5.28)

where ∇H denotes the L2 gradient of H(ξ, η) and the Poisson tensor is now
defined by

J =
(
−1 0
0 1

)
∂y . (5.29)

In the variables (ξ, η) the various parts of the Hamiltonian take the form

H0(ξ, η) =
∫ 1

−1

ξ2 + η2

2
dy (5.30)

P (ξ, η) =
∫ 1

−1

[
− [∂y(ξ − η)]2

48
+

(ξ + η)n

n2n/2

]
dy , (5.31)

and in particular the equations of motion of H0 and the flow Ψτ assume the
simple form

[ξτ = −ξy , ητ = ηy] ⇐⇒ [ξ(y, τ) = ξ0(y − τ) , η(y, τ) = η0(y + τ)] .
(5.32)

It is now easy to obtain the following

Proposition 5.1. In the variables ξ, η the average of the perturbation is
given by

〈P 〉(ξ, η) = −
∫ 1

−1

[
(ξy)2 + (ηy)2

48

]
+

1
2n/2n

n∑

l=0

Cnl [ξl][ηn−l] . (5.33)

In the above expression, Cnl ≡ n!/(l!(n− l)!) while [f j] ≡
∫ L
0
f j dx/2; we will

refer to the latter as to the moment of f of order j, or simply the j-th moment
of f .

For the proof see [10, 11].
The equations of motion associated to H0 + μ2〈P 〉 are

⎧
⎨

⎩

ξτ = −ξy − μ2(1/24)ξyyy − μ2(1/2n/2)
∑n−1

l=1 C
n−1
l [ηn−l−1](ξl)y

ητ = ηy + μ2(1/24)ηyyy + μ2(1/2n/2)
∑n−1

l=1 C
n−1
l [ξn−l−1](ηl)x

. (5.34)

These are generalized Kortweg–de Vries (gKdV) equations.
One can easily check that for n = 3 and n = 4 they yield, respectively, the

KdV and the modified KdV equation (see below), which are both integrable.
Moreover it is now clear that they appear here as the resonant normal forms
of the corresponding FPU models.1

1 For an interesting related result see [12]
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Notice that, as a consequence of averaging, the two second-order momenta
of ξ and η are constants of motion for system (5.34). Moments of order greater
than two will be time-dependent, and as a consequence the above equations
are actually coupled and of integro-differential type for n ≥ 6 (as we will show
below the case n = 5 is a special one).

5.3 Metastability or Blow up

In this section we discuss the dynamics of the normal-form equations (5.34)
from a qualitative point of view.

5.3.1 n = 3: α-Model

To begin with, let us consider the case n = 3, and report the results obtained
in [9]. The equations of motion are

ξτ = −ξy − μ2 1
24

ξyyy − μ2 1
2
√

2
(ξ2)y , (5.35)

ητ = ηy + μ2 1
24

ηyyy + μ2 1
2
√

2
(η2)y , (5.36)

i.e. two uncoupled KdV equations in translating frames (to the right for the
first equation and to the left for the second one). Their dynamics is very well
understood and, in particular, it is known that any solution of the Cauchy
problem is almost periodic and the solution has the same regularity as the
initial datum. One can easily conclude from the theory of [13] that if one
initially gives energy only to the first Fourier mode then, up to infinite times,
the solution remains analytic, and therefore the energy remains exponentially
localized in the first Fourier modes. Thus corresponding to initial data on a
low-frequency Fourier mode one will see that, on a time-scale of the order of
μ−3, the energy will flow to a small packet of modes which oscillate with an
amplitude exponentially decreasing with the mode index, and this situation
will last forever. Thus, in KdV there is a formation of a small packet à la
FPU which is stable for infinite times (the time averages of the mode-energies
relax).

In order to get conclusions on the dynamics of the FPU one needs a precise
relation between the KdV and the FPU. From the fact that the KdV is a
first-order normal form of the system one expects that the solutions of KdV
describe well the FPU only up to times of order μ−3 ∼ ε−3/4. This was
proved in [10] by a rigorous theory that will be summarized in Sect. 5.4 (see
Theorem 5.3 below for a precise statement).

Afterwords one can expect that higher order corrections come into play
and modify the dynamics. However, one has to remark that the KdV is an
integrable system which is nondegenerate (in KAM sense) and therefore one
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expects higher order corrections not to modify qualitatively the dynamics.
In the spirit of Nekhoroshev’s theory, the dynamics of the KdV should be
unchanged up to times exponentially growing with a power of ε−1. The small
packet of modes which was quickly formed should persist for exponentially
long times; this was actually verified numerically in [7]. Thus we can call it a
metastable state.

It is worth mentioning that this phenomenon is related to two properties,
namely the fact that the linearized FPU is resonant (more precisely the dis-
persion relation is approximatively linear for low frequencies), and the very
surprising fact that the first order normal form is integrable. Indeed, if the
linearized system were nonresonant, the perturbation would not be able to
efficiently spread energy among the modes, thus preventing the formation of
the packet of modes.

5.3.2 n = 4: β-Model

In the case n = 4 the situation is similar to the case n = 3. The equations of
motion have the form

ξτ = −
(

1 +
3μ2

4
[η2]

)
ξy −

μ2

24
ξyyy −

μ2

4
(ξ3)y , (5.37)

ητ =
(

1 +
3μ2

4
[ξ2]

)
ηy +

μ2

24
ηyyy +

μ2

4
(η3)y , (5.38)

which, taking into account the conservation of the momenta of order two,
reduce to two uncoupled mKdV equations in translating frames, again two
integrable equations.

However the mKdV is less studied than the KdV, thus at present a pre-
cise theorem is not available. However we think that this is only a technical
problem, and that, developing the techniques of [13], one should be able to
show that the β-model has the same features of the α-model; indeed numerical
computations display a behavior very similar to that of the α-FPU [7].

5.3.3 n = 5: γ-Model

It is interesting to consider explicitly also the case n = 5. In such a case the
equations of motion (5.34) read

ξτ = −
(

1 +
μ2[η3]√

2

)
ξy −

μ2

24
ξyyy −

3μ2

2
√

2
[η2](ξ2)y −

μ2

4
√

2
(ξ4)y , (5.39)

ητ =
(

1 +
μ2[ξ3]√

2

)
ηy +

μ2

24
ηyyy +

3μ2

2
√

2
[ξ2](η2)y +

μ2

4
√

2
(η4)y . (5.40)

Notice that in this case the (time dependent) momenta of third order appear
on the r.h.s. of the two equations. By the change of variables
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ξ(y, τ) = ξ′(y − a(τ), τ) , η(y, τ) = η′(y + b(τ), τ) ,

where
da
dτ
≡ 1 +

μ2[η3](τ)√
2

,
db
dτ
≡ 1 +

μ2[ξ3](τ)√
2

,

(5.39)–(5.40) become two uncoupled KdV equations of fourth order.

5.3.4 n ≥ 6: Higher Models

In the case n ≥ 6 the normalized equations consist of a pair of coupled in-
tegrodifferential gKdV equations. Their behavior can be studied heuristically
by using, for example scaling arguments (details will be published elsewhere),
and one can show that, if one starts with analytic (in space) initial data having
a pole at a certain distance from the real axis, then the corresponding solution
is expected to remain analytic over R if n ≤ 5, while the pole is expected to
reach the real axis if n ≥ 7, the case n = 6 being “critical.” Since the whole
behavior seems to depend only on the homogeneity degree of the nonlinearity
and on the fact that the momenta of order two are conserved, it is useful to
use a model problem where a lot is known, namely the standard gKdV

ξt = ξyyy + (ξn−1)y . (5.41)

Here (at least on unbounded domains) it is known [14] that corresponding
to smooth initial data there are two possibilities: (1) the solution remains
smooth for all times or (2) the H1 (energy) norm of the solution becomes
infinite at a finite time. The situation depends on the value of n. If n ≤ 5 the
solution is smooth for all times, if n ≥ 7 every solution is expected to blows up
in finite time, and finally, if n = 6 then the behavior of the solution depends
on the initial datum, and there are rigorous results on the existence of blow
up solutions [15].

As a consequence one might conjecture the existence of a corresponding
situation for the FPU: if n ≤ 5 a metastable packet of modes is expected to
exists, if n ≥ 7 the FPU phenomenon is expected to disappear, and finally,
the case n = 6 is critical in the sense that the packet will exist only for some
initial data.

It is important to remark that in the case n = 5 the normal form (5.39)–
(5.40) are not integrable. However, according to our conjecture one would
expect to observe a FPU phenomenology similar to the cases n = 3, 4, where
the normal form equations are integrable. This fact forces to look for a mech-
anism weaker than integrability to explain the FPU paradox. The stability
of the soliton solutions of (5.41) for n ≤ 5 and their blowing-up for n ≥ 7
suggest that a sort of Soliton Turbulence, analogous to the one proposed by
Zakharov in the context of the NLS equations, might be the relevant phe-
nomenon in FPU.

From a physical point of view, stable, space-localized solitary wave
structures, trap the energy on a spatial scale which is lower bounded. As
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a consequence, in Fourier space the energy cannot flow above some critical
wave-number. On the contrary, in the supercritical cases n ≥ 7, to the collapse
in real space of the solitary wave structures there corresponds energy injection
at any Fourier wavenumber, which we interpret as the mechanism triggering
off the approach to equipartition in a short time.

In conclusion we conjecture the existence of a critical degree of nonlinear-
ity, nc = 6, in system (5.4), below which the FPU phenomenology (metasta-
bility of partial equipartition states) should be possible, and above which it
could disappear. The relevant quantities characterizing the metastable state
in the subcritical cases (n ≤ 5), are the time-scale T1 of formation of the
metastable state (consisting of a packet of modes sharing the energy) and al-
most equipartited, and the size Δk/N of such a packet in Fourier space. From
the scaling previously introduced in terms of the small parameter μ and from
its link with the specific energy given in (5.11), one easily gets

T1 ∼ μ−3 ∼ ε−
3(n−2)

4 ,

and
Δk/N ∼ μ ∼ ε

n−2
4 ,

which generalize to the case of arbitrary n those introduced in [1].

5.4 Rigorous Results

We give here the precise relation between the FPU and its normal form (5.34)
and deduce some rigorous results on the formation of the packet.

First of all we have to introduce a norm in order to measure the error be-
tween the correct equations and the equations in normal form. This is conve-
niently done in terms of Fourier coefficients. Moreover, since we are interested
in exponentially localized packets we will use a norm that controls the Fourier
coefficients with an accuracy growing exponentially with the index.

Definition 5.2. Having fixed two positive constants s, σ consider the Hilbert
space 
2σ,s of the complex sequences v ≡ {vk}k∈Z−{0} such that

‖v‖2σ,s :=
∑

k

|vk|2|k|2se2σ|k| <∞ . (5.42)

We will identify a 2 periodic function v with its Fourier coefficients defined
by (5.24). We will say that v ∈ 
2σ,s if its Fourier coefficients have this property.
Correspondingly we define the phase spaces Ps by

Ps := 
2σ,s+1 × 
2σ,s � (v, u) , (5.43)

and denote
‖(v, u)‖2s := ‖v‖2σ,s+1 + ‖u‖2σ,s ; (5.44)



202 D. Bambusi and A. Ponno

σ is fixed. The ball of radius R centered at the origin of Ps will be denoted
by Bs(R).

Then the flow Ψτ of the system H0 is unitary in all the spaces Ps.

Theorem 5.1. For any r ≥ 5 there exists a constant μ∗ ≡ μ∗r, such that, if

μ < μ∗

then there exists an analytic canonical transformation T : Br(1) → Br(2)
which averages K see (5.17), namely such that

K ◦ T = H0 + μ2〈P 〉+R ; (5.45)

the vector field XR of the remainder is analytic in a complex ball of radius 1
and fulfills the estimate

sup
‖z‖r≤1

‖XR(z)‖0 ≤ Crμ
4− 12

6+r . (5.46)

Moreover for any 1 ≤ r1 ≤ r the transformation T maps Br1(1) into Pr1 and
fulfills

sup
‖z‖r1

≤1

‖z − T (z)‖r1 ≤ Cμ2− 6
6+r . (5.47)

The idea of the proof is to approximate the system by a system with finitely
many degrees of freedom, say M , to construct the canonical transformation
that averages the finite dimensional system, and finally to choose M in a such
a way that the order of magnitude of the error due to the averaging procedure
is equal to the order of magnitude of the error due to the cutoff procedure.
For the details see [10].

Theorem 5.1 shows that the equations of motions of the FPU are a per-
turbations of the normal form equations described in the previous section.
However they are a very singular perturbation since the remainder has a vec-
tor field which is small only when considered as an operator extracting r
derivatives, with r ≥ 5. As pointed out in [16] the use of such a normal form
for dynamical previsions is far from trivial. In the present case one can use
a technique developed by Schneider and Wayne in [17] and generalized to a
form suitable for our purpose [10, 16].

Since when dealing with the FPU system we are interested in Fourier
modes, we explicit state their definition. Thus, for a given FPU state (qj , pj),
we have

pj =
1√
2N

N−1∑

k=−N
p̂kei jkπ

N (5.48)

and similarly for qj . We denote by

Ek :=
|p̂k|2 + ω2

k|q̂k|2
2

, k = −N...., N − 1 (5.49)
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the energy of the kth mode.
Let ξa(y, τ), ηa(y, τ) be a solution of the normal form equations (5.34).

Correspondingly, we define an approximate solutions za ≡ (ra, sa) of the
FPU by

ra(x, t) :=
ξa(μx, μt) + ηa(μx, μt)√

2
(5.50)

sax(x, t) :=
ξa(μx, μt)− ηa(μx, μt)√

2
(5.51)

and an initial datum for the FPU by r0,j := ra(j, 0), s0,j := sa(j, 0). We will
denote by (rj(t), sj(t)) the corresponding true solution of the FPU.

Then we have the following:

Theorem 5.2. Fix a positive Tf ; assume that for all times |t| < Tf/μ
3 the ap-

proximate solution is such that (ξa, ηa) ∈ P78 and has norm smaller than 1 and
fix some σ > 0. Then there exists μ∗ depending on Tf and on

∥∥(ξa(t), ηa(t)
)∥∥

78
only, such that, if μ < μ∗ then for all times t fulfilling

|t| ≤ Tf
μ3

(5.52)

one has
sup
j

(|rj(t)− ra(j, t)|+ |sj(t)− sa(j, t)|) ≤ Cμ ; (5.53)

moreover
∣∣∣∣∣
Ek(t)
N

− μ4

[
|ξ̂aK(t)|2 + |η̂aK(t)|2

2
+
|ξ̂a−K(t)|2 + |η̂a−K(t)|2

2

]∣∣∣∣∣ ≤ Cμ5 (5.54)

for all k such that k
N = μK with |K| ≤ | lnμ|

2σ , and

|Ek(t)|
N

≤ μ5 (5.55)

for all k such that k
N = μK with |K| > | lnμ|

2σ , whereas Ek(t) = 0 otherwise.

We recall that the Fourier coefficients ξ̂aK , and η̂aK are defined by (5.20).
We remark that in view of the discussion of the previous section (see also

the references quoted therein) we can ensure rigorously that correspondingly
to smooth initial data the solution of the normal form equation is smooth
enough to apply the above theorem in the case n = 3 (see, e.g. [13]), we
expect that in the case n = 4 the same result should be true and that, due
to integrability of the mKdV it should be possible to obtain a proof by the
same methods as for the case n = 3. We expect that the smoothness property
of the solutions should be true also in the case n = 5, and also when n = 6
provided the energy is small enough, however here no ideas for the proof are
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available. On the contrary we expect that this assumption is violated in the
case n ≥ 7.

In particular in the case n = 3, using the theory of the KdV equation
developed in [13], one can prove a precise result for the formation of the
packet.

It is convenient to state the result in terms of “specific quantities,” thus
we will label the modes with the index

κ :=
k

N
;

correspondingly we denote by

Eκ :=
Ek
N

(5.56)

the specific energy in the mode with index κ.

Theorem 5.3. Fix a constant C0 and a positive (large) time Tf ; then there
exist positive constants μ∗, C1, C2, dependent only on C0 and on Tf , such
that the following holds. Consider an initial datum with

Eκ0(0) = C0μ
4 , Eκ(0) ≡ Eκ(t)

∣∣
t=0

= 0 , ∀κ �= κ0 , (5.57)

and assume μ < μ∗. Then, there exists σ > 0 such that, along the correspond-
ing solution, one has

(i)

Eκ(t) ≤ μ4C1e−σκ/μ + C2μ
5 , for |t| ≤ Tf

μ3
(5.58)

for all κ > 0.
(ii)There exists a sequence of almost periodic functions {Fn}n∈N such that,

defining the specific energy distribution

Fnκ0 = μ4Fn , Fκ = 0 if κ �= nκ0 (5.59)

one has
|Eκ(t)−Fκ(t)| ≤ C2μ

5 , |t| ≤ Tf
μ3

. (5.60)

Remark 5.4. Since Fn(t) are almost periodic functions of time their time av-
erage defined by

F̄n := lim
T→∞

1
T

∫ T

0

Fn(t)dt (5.61)

exists (see, e.g. [18]). It follows that up to the error the time average of Eκ(t)
relaxes to the limit distribution obtained by rescaling F̄n as in (5.59).



5 Resonance, Metastability and Blow up in FPU 205

References

1. A. Ponno, Soliton theory and the Fermi–Pasta–Ulam problem in the thermo-
dynamic limit. Europhys. Lett., 64(5), 606–612 (2003). 191, 201

2. N.J. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma
and the recurrence of initial states. Phys. Rev. Lett., 15, 240–243 (1965). 192

3. E. Fermi, J.R. Pasta and S.M. Ulam, Studies of nonlinear problems. In Collected
works of E. Fermi, Vol. 2. Chicago University Press, Chicago, 1965. 192

4. L. Galgani and A. Scotti, Planck-like distribution in classical nonlinear me-
chanics. Phys. Rev. Lett. 28, 1173–1176, (1972). 192

5. J.A. Biello, P.R. Kramer, Y. Lvov, Stages of energy transfer in the FPU model,
DCDS 113–122 (2003); supplement volume for the Proceedings of the AIMS-
4th International Conference on Dynamical Systems and Differential Equations,
Wilmington, NC, USA, 2002. 192

6. L. Berchialla, L. Galgani and A. Giorgilli, Localization of energy in FPU chains.
Discrete Contin. Dyn. Syst., 11(4), 855–866 (2004). 192

7. L. Berchialla, A. Giorgilli and S. Paleari, Exponentially long times to equipar-
tition in the thermodynamic limit. Phys. Lett. A, 321, 167–172 (2004). 192, 199

8. A. Giorgilli, S. Paleari and T. Penati, Local chaotic behaviour in the Fermi–
Pasta–Ulam system. Discr. Contin. Dyn. Syst. Ser. B, 5(4), 991–1004 (elec-
tronic) (2005). 192

9. B. Rink, Symmetric invariant manifolds in the Fermi–Pasta–Ulam lattice.
Phys. D, 175(1–2), 31–42 (2003). 193, 198

10. D. Bambusi and A. Ponno, On metastability in FPU. Comm. Math. Phys.,
264(2), 539–561 (2006). 197, 198, 202

11. A. Ponno and D. Bambusi, Energy cascade in Fermi–Pasta–Ulam model. Sym-
metry and Perturbation Theory 2004, pp. 263–270. World Scientific, 2005. 197

12. B. Rink, Symmetry and resonance in periodic FPU chains. Comm. Math.
Phys., 218(3), 665–685 (2001). 197
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Abstract. Center manifold theory has been used in recent works to analyze
small amplitude waves of different types in nonlinear (Hamiltonian) oscillator
chains. This led to several existence results concerning traveling waves described
by scalar advance-delay differential equations, pulsating traveling waves determined
by systems of advance-delay differential equations, and time-periodic oscillations
(including breathers) obtained as orbits of iterated maps in spaces of periodic func-
tions. The Hamiltonian structure of the governing equations is not taken into account
in the analysis, which heavily relies on the reversibility of the system. The present
work aims at giving a pedagogical review on these topics. On the one hand, we give
an overview of existing center manifold theorems for reversible infinite-dimensional
differential equations and maps. We illustrate the theory on two different problems,
namely the existence of breathers in Fermi–Pasta–Ulam lattices and the existence of
traveling breathers (superposed on a small oscillatory tail) in semi-discrete Klein–
Gordon equations.

6.1 Introduction

The seminal work of Fermi, Pasta and Ulam in 1955 [12] had a broad impact
on the development of the theory of nonlinear lattices. The Fermi–Pasta–
Ulam (FPU) model consists of a chain of masses nonlinearly coupled to their
nearest neighbors. For a general nearest-neighbors interaction potential V , the
governing equations read

d2xn
dt2

= V ′(xn+1 − xn)− V ′(xn − xn−1), n ∈ Z (6.1)

where we note xn the displacement of the nth mass with respect to an equi-
librium position (in this version of the model the chain is of infinite extent).
The anharmonic interaction potential V satisfies V ′(0) = 0, V ′′(0) = 1.
System (6.1) is Hamiltonian, with total energy
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H =
+∞∑

n=−∞

1
2

(
dxn
dt

)2

+ V (xn+1 − xn). (6.2)

In their numerical work (for finite chains with polynomial interaction
potentials) Fermi et al surprisingly observed a near-recurrence of some ini-
tial conditions (corresponding to a low-frequency linear mode) instead of the
expected thermalization of the system. The FPU-recurrences have been later
understood with the discovery of the properties of solitons solutions of the
Kortweg–de Vries (KdV) equation [2, 3, 4]. In parallel to the mathematical
justification of the KdV-limit in the FPU lattice [5, 6, 7], the mathematical
theory of exact solitary waves in this system has been the object of important
developments in the last 10 years [8, 9, 10, 11, 12, 13, 14, 15, 16].

In addition, Iooss [16] provides for the FPU system a precise description of
the set of small amplitude traveling waves with near-sonic speed (both above
and below the sound velocity). Traveling waves with velocity c are solutions of
a scalar advance-delay differential equation, which is viewed as a (reversible)
infinite-dimensional differential equation in the moving frame coordinate ξ =
n− c t. Small amplitude solutions are determined by a “reduced” differential
equation on an invariant local center manifold. If V (3)(0) �= 0, the principal
part of the reduced equation corresponds to a stationary KdV equation in
the moving frame coordinate. This approach is not limited to solitary wave
solutions, since in a given parameter regime all the small amplitude traveling
waves of the FPU system lie on a finite-dimensional center manifold.

More generally, the center manifold reduction method has been used to
analyze small amplitude traveling waves in different types of nonlinear lat-
tices, e.g. for generalized discrete nonlinear Schrödinger equations in certain
parameter regimes [17]. In this context, infinite-dimensional center manifold
theory has been initially introduced by Iooss and Kirchgässner [18] to study
small amplitude traveling waves in the Klein–Gordon (KG) lattice. The KG
lattice consists of a chain of nonlinear oscillators in an anharmonic potential
V , linearly coupled to their nearest neighbors. The equations of motion read

d2xn
dt2

+ V ′(xn) = γ(xn+1 − 2xn + xn−1), n ∈ Z, (6.3)

where γ > 0 determines the coupling strength, V ′(0) = 0, V ′′(0) = 1. This
system is Hamiltonian, with total energy

H =
+∞∑

n=−∞

1
2

(
dxn
dt

)2

+ V (xn) +
γ

2
(xn+1 − xn)2.

Subsequently, the analysis of traveling waves by Iooss and Kirchgässner has
been extended to pulsating traveling waves by the present authors [19, 20, 21].
These solutions are searched to satisfy

xn(t) = xn−p(t− T ), (6.4)
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where p ≥ 1 is a fixed integer and the propagation time T ∈ R
∗ is

taken as a parameter (traveling waves correspond to fixing p = 1 and
c = 1/T in the above definition). Systems (6.3)–(6.4) is equivalent to a (re-
versible) p-dimensional system of coupled advance-delay differential equations
for (x1, . . . , xp). The center manifold theorem reduces systems (6.3)–(6.4) lo-
cally to a finite-dimensional ordinary differential equation on a center mani-
fold, whose dimension depends on p and parameters γ, T .

In certain parameter regimes, this simplification allows one to show the ex-
istence of small amplitude traveling waves [18] and pulsating traveling waves
[20] (for an even potential V ) in the form of nanopterons, a denomination
introduced by Boyd [22]. Nanopterons consist in a single pulse (here a mod-
ulated plane wave whose envelope is spatially localized), superposed on a
nondecaying oscillatory tail which is small with respect to the central pulse
amplitude. For the KG system, fully localized solutions (i.e. solutions with-
out an oscillatory tail) may exist for exceptional values of parameters (γ, T ,
parameters in the potential V ) but this situation in non-generic. In the small
amplitude limit, nanopterons possess an exponentially small oscillatory tail
with respect to the central pulse amplitude, and consequently they are very
close to spatially localized solutions. However, nanopterons are solutions of
infinite energy due to their nondecaying oscillatory tail. For the KG system
and in the small amplitude regime, the central pulse of nanopterons can be ap-
proximated at leading order using the nonlinear Schrödinger (NLS) equation
[23]. Figure 6.1 shows a corresponding solution profile followed up numerically
in the high amplitude regime.

Pulsating traveling waves of this type have been numerically computed
by the present authors in [24], and [25] treats the case of traveling waves.
The existence of traveling kinks showing similar oscillatory tails is reported in
several references (see, e.g. [26]). Pulsating solitary waves in the FPU lattice
are analyzed by Iooss and one of us (G.J.) in [27], using the same center
manifold reduction method. In addition to (subsonic) nanopterons close to the
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Fig. 6.1. Solution of (6.3)–(6.4) for p = 2, T = 8.1, γ = 0.9, V (x) = 1 − cos(x).
This pulsating wave satisfies xn(t) = −xn−1(t−T/2). Left figure : solution at t = 0.
Right figure : zoom on the oscillating tail (not visible at the scale of left figure)
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NLS limit, one proves the existence of supersonic solitary waves superposed
on an (arbitrarily small) extended tail moving at subsonic speed.

The above mentionned applications of center manifold theory concerned
reversible systems of advance-delay differential equations. In addition, the
method has been extended by one of us (G.J.) to infinite-dimensional quasi-
linear maps in Hilbert spaces [28]. The center manifold theorem proved in
this context can be used to study time-periodic oscillations in infinite oscilla-
tor chains. For example, the FPU system (6.1) can be viewed (after rescaling
time) as an infinite-dimensional reversible map (xn, xn−1) �→ (xn+1, xn) in a
space of 2π-periodic functions of t (one uses the fact that V ′ is locally in-
vertible). The oscillation frequency enters the map as a bifurcation parameter
as time has been rescaled. Small amplitude orbits of the map lie on a finite-
dimensional center manifold, thereby being fully determined by the finite-
dimensional “reduced” mapping on the center manifold. The center manifold
theorem for quasilinear maps has been subsequently applied to other nonlinear
lattices, including diatomic FPU chains [32] and spin lattices [33].

The center manifold dimension is determined by the number of resonant
phonons in a given parameter regime. A phonon denotes a normal mode
xn(t) = a exp[i(k n−Ωt)] + c.c. solution of the linearized equations of motion
(Ω(k) being fixed by a dispersion relation). As one looks for solutions with
frequency ω close to some value ω0, a phonon is said to be resonant (a shortcut
for nearly-resonant) if Ω/ω0 ∈ Z.

The reduction scheme described above allows one to prove for the FPU
model (with hardening interaction potentials) the existence of small ampli-
tude “breathers” bifurcating above the top of the phonon frequency band [29]
(other types of proofs based on variational methods are also available [30, 31]).
A breather consists of a time-periodic solution of (6.1) (excluding equilibria)
which is spatially localized, i.e. satisfies

lim
n→±∞ ‖ xn(.)− c± ‖L∞(R) = 0 (6.5)

for some constants c± ∈ R. Near the top of the phonon band, the reduced
mapping determines (roughly speaking) the first-order Fourier coefficient of
relative displacements, and breather solutions correspond to orbits of the re-
duced mapping homoclinic to 0.

Let us mention a connection between breather solutions and spatially lo-
calized pulsating traveling waves satisfying (6.4). Pulsating traveling waves
can be seen as time-periodic oscillations in a frame moving at some con-
stant velocity, and consequently spatially localized ones appear as breather
solutions in this moving frame. Such solutions are commonly referred to as
traveling breathers. Traveling breathers can be generated in certain systems
by perturbing a breather solution in the direction of a “pinning mode” [25].
The expression “traveling breather” is also often used to denote nanopteron
solutions, due to the fact that their spatially extended tail can be made ex-
ponentially small, which makes them very close to fully localized traveling
breather solutions.
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The aim of the present work is double. On the one hand, we present a
review of [29] (Sects. 6.2.2 and 6.4.1) and [20] (Sects. 6.3.1 and 6.4.2), based
on center manifold theory, which examine the existence of breathers and
nanopterons in FPU and KG lattices respectively. Numerical computations
from references [24, 34] are also presented to illustrate the mathematical re-
sults. On the other hand we give an overview of the general center manifold
theorems which have been applied in this context, considering both infinite-
dimensional differential equations [35, 36] and quasilinear maps [28]. We only
examine the aspects of the theory which are relevant to the above class of
nonlinear lattices. In particular, related tools in semigroup theory as well as
the center manifold theory for dissipative systems are not reviewed here.

Sect. 6.2 treats the center manifold reduction for maps. After recalling
the finite-dimensional case (Sect. 6.2.1), we start by the description of an
infinite-dimensional situation (time-periodic oscillations in the FPU lattice,
Sect. 6.2.2). This illustration is aimed at making the general theory for quasi-
linear maps (Sect. 6.2.3) more accessible. Sect. 6.3 is concerned with the center
manifold reduction for infinite-dimensional differential equations. We start by
an example on advance-delay differential equations (pulsating traveling waves
in the KG lattice, Sect. 6.3.1), and state the general center manifold theorem
in Sect. 6.3.2. This version of the center manifold theorem in infinite dimen-
sions concerns semilinear equations and is due to Vanderbauwhede and Iooss
[36]. The quasilinear case has been treated by Mielke [35]. Section 6.4 focuses
on applications of the theory, for the existence of breathers in FPU lattices
(Sect. 6.4.1) and the existence of nanopterons in KG lattices (Sect. 6.4.2). The
analysis consists in studying the dynamics of the related maps and flows on
the center manifolds.

6.2 Center Manifold Reduction for Maps

6.2.1 Finite-Dimensional Case

We consider a nonlinear mapping in R
N

un+1 = Lun +N(un, μ) (6.6)

where L ∈MN (R), μ ∈ R
p is a parameter, and N is a smooth nonlinear map

(Ck in a neighborhood of 0 with k ≥ 2) satisfying N(0, 0) = 0, DuN(0, 0) = 0.
An orbit of (6.6) is a sequence {un}n∈Z

in R
N . For μ = 0 the mapping (6.6)

admits un = 0 as a fixed point.
In what follows we denote by a generalized eigenvector of L (corresponding

to an eigenvalue λ) a nonzero element of the kernel of (L − λ I)n for some
integer n ≥ 0 (a basis of generalized eigenvectors can be used to write the
matrix L in Jordan form). One can split R

N into invariant subspaces under
L spanned by such generalized eigenvectors, each subspace corresponding to
a single eigenvalue λ. More globally we shall note Xc as the subspace of
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R
N spanned by the (generalized) eigenvectors of L whose eigenvalues have

modulus 1, and note Xh the complementary subspace spanned by the other
(generalized) eigenvectors. The subspaces Xc and Xh are denoted respectively
as center and hyperbolic subspace. We assume Xc, Xh �= {0}. The center
manifold theorem states the following [37, 38, 39].

Theorem 6.1. There exits a neighborhood Ω×Λ of 0 in R
N ×R

p and a map
ψ ∈ Ck(Xc×Λ, Xh) (with ψ(0, 0) = 0, Duψ(0, 0) = 0) such that for all μ ∈ Λ
the manifold

Mμ =
{
u ∈ R

N |u = x+ ψ(x, μ), x ∈ Xc

}
(6.7)

has the following properties.

(i) Local invariance: Mμ is locally invariant under L + N(., μ), i.e. if
u ∈Mμ

⋂
Ω then Lu+N(u, μ) ∈Mμ.

(ii) Reduction: If (un)n∈Z is a solution of (6.6) such that un ∈ Ω for all n ∈ Z

then un ∈Mμ for all n ∈ Z.

Properties (i) and (ii) are clearly true for N = 0 since the mapping is
linear (then Mμ = Xc), and the theorem states that they remain true locally
in the nonlinear case. This result guarantees (for μ ≈ 0) that small amplitude
solutions of (6.6) belong to an invariant manifold whose dimension (equal to
dim Xc) is lower than N .

We now want to generalize this result for infinite-dimensional maps. The
case when L+N(., μ) is Ck in a Banach space X has been treated in [38, 39].
In a more general context, more recent results on local invariant manifolds for
Ck maps in Banach spaces can be found in references [40, 41].

Here we shall consider situations when the operator L is unbounded
(theory developed in [28]). We shall restrict the discussion to maps in Hilbert
spaces, but the same theory could be carried out in Banach spaces (with some
additional technicalities involved in the cut-off of nonlinear terms [36]). The
following section is aimed at motivating the theory.

6.2.2 Example in Infinite Dimensions

For a large class of infinite one-dimensional lattices, time-periodic oscillations
can be viewed as solutions of an ill-posed recurrence relation on a loop space
(i.e. a space of periodic functions), which can be locally analyzed using a center
manifold reduction [28]. As an example, consider the FPU lattice (6.1). We
look for time-periodic solutions of (6.1) having a given frequency ω. Since
V ′ is locally invertible, one can reformulate (6.1) using the force variable
yn(t) = V ′(xn−xn−1)(t/ω) (yn is 2π-periodic in t). This yields the equations

ω2 d2

dt2
W (yn) = yn+1 − 2yn + yn−1, n ∈ Z, (6.8)
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whereW = (V ′)−1. Note that the frequency ω appears in (6.8) as a bifurcation
parameter. For formulating (6.8) as a mapping in a loop space, we introduce
the variable un = (yn−1, yn) ∈ D where D is a space of 2π-periodic functions
of t which has to be precised. Problem (6.8) takes the form of a mapping

un+1 = Fω(un), (6.9)

where Fω(yn−1, yn) = ( yn , ω2(d2/dt2)W (yn)+2yn− yn−1 ). Here we analyze
problem (6.8) using a discrete spatial dynamics approach. This concept orig-
inates from the continuous case of partial differential equations. It has been
introduced in [42] for studying elliptic partial differential equations in cylin-
drical domains, formulated as ill-posed evolution problems in the unbounded
space coordinate.

We now define appropriate function spaces on which the operator Fω is
acting. We look for (un)n∈Z as a sequence in the following space D

D =
{
u ∈ H2 ×H2, u even in t,

∫ 2π

0

u dt = 0
}
,

where Hn denotes the classical Sobolev space Hn(R/2πZ) (the conditions of
eveness in t and zero time-average simplify the problem but are not essential).
The recurrence relation (6.9) holds in

X =
{
u ∈ H2 ×H0, u even in t,

∫ 2π

0

u dt = 0
}

and the operator Fω : D → X is smooth in a neighborhood of zero.
By a solution of (6.9) we mean a sequence (un)n∈Z in D satisfying (6.9)

for all n ∈ Z. A particular solution is the fixed point u = 0 corresponding to
the lattice at rest. An important feature of (6.9) is that the derivative of Fω
at u = 0 (denoted by Lω = DFω(0)) is unbounded in X (of domain D) and
thus the recurrence relation (6.9) is ill-posed (in fact there are no solutions
of (6.9) for most initial conditions u0 ∈ D).

Solutions of (6.9) homoclinic to u = 0 (i.e. satisfying lim|n|→+∞ ‖ un ‖D =
0) have been extensively studied. They correspond to discrete breather solu-
tions of (6.8), i.e. spatially localized solutions with time-period 2π (we refer
the reader to [43] for a general review on discrete breathers). One property
making the existence of homoclinic solutions more likely is the invariance
yn → y−n in (6.8). Indeed, this invariance implies that (6.9) is reversible
with respect to the symmetry R defined by R(a, b) = (b, a), i.e. if un is a
solution of (6.9) then Ru−n is also a solution. Consequently, if the unstable
manifold W u(0) intersects the fixed set Fix (R) then their intersection also
belongs to the stable manifold W s(0) and homoclinic orbits exist. Note that
problem (6.8) has the invariance yn → yn(t+ π) and thus Fω commutes with
the symmetry T defined by (T u)(t) = u(t+π). As a consequence, TR defines
another reversibility symmetry.
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In the sequel, we shall consider small amplitude solutions of (6.9), therefore
the first step is to examine the linearized problem around u = 0. The operator
Lω is given by Lω(yn−1, yn) = ( yn , (ω2 d2

dt2 + 2)yn − yn−1 ). We denote by
σk, σ

−1
k (k ≥ 1) the eigenvalues of Lω, given by the dispersion relation

σ2 + (ω2k2 − 2)σ + 1 = 0 (6.10)

(by convention we denote by σk the solution of (6.10) satisfying |σk| ≥ 1 and
Imσk ≤ 0). The invariance σ → σ−1 in (6.10) is due to reversibility. The
invariant subspace under Lω associated with the pair of eigenvalues σk, σ−1

k

is spanned by the vectors (cos(kt), 0) and (0, cos(kt)). When ω is large, the
eigenvalues are real negative and lie strictly off the unit circle (both inside and
outside). When ω decreases, σk moves towards the unit circle. As ω reaches
the first critical value ω = 2 (maximal phonon frequency), the eigenvalues
σ1, σ

−1
1 collide and yield a double (nonsemi-simple) eigenvalue σ = −1 (see

Fig. 6.2). When ω is further decreased, σ1, σ
−1
1 rotate on the unit circle and

converge towards σ = 1 as ω → 0+. More generally, the pair of eigenvalues
σk, σ

−1
k collide at σ = −1 when ω = 2/k.

The above analysis shows that the fixed point u = 0 of (6.9) is hyperbolic
when ω > 2. In this case, we shall see that the stable and unstable manifolds
W s(0), W u(0) can intersect, depending on the properties of V . More precisely,
for ω ≈ 2 the pair of eigenvalues σ1, σ

−1
1 is close to −1 and (6.9) may admit

small amplitude homoclinic orbits to u = 0.
In order to perform a local bifurcation analysis, we restrict our attention

to the case when ω ≈ 2. We introduce the small parameter μ = ω2 − 4 and
write (6.9) in the form

un+1 = Lun +N(un, μ), (6.11)

where L = L2 is the linearized operator with ω = 2 and

N((yn−1, yn), μ) =
(

0 ,
d2

dt2
g(yn, μ)

)
,

with g(y, μ) = 4(W (y) − y) + μW (y). One has ‖N(u, μ) ‖X = O(‖u‖2D +
μ ‖u‖D) � ‖Lu ‖X as (u, μ) ≈ 0, hence a good starting point for study-
ing (6.11) is to start from the linear case.

−1σ1 σ1σ1
−1

σ1
−1

Fig. 6.2. Spectrum of Lω near the unit circle for ω > 2 (left), ω = 2 (center), ω < 2
and ω ≈ 2 (right)
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The solutions of
un+1 = Lun, un ∈ D, (6.12)

can be computed using Fourier series. Due to the existence of a spectral gap
separating σ1 = −1 from the remaining (hyperbolic) part of the spectrum,
solutions of (6.12) can be splitted in the following two classes. The first kind
of solutions grows at least like |σ2||n| as n → +∞ or −∞. The second kind
has the form

un = (yn−1, yn), yn = (−1)n (α+ β n) cos t

and diverges at most polynomially as |n| → +∞. Consequently, solutions un
of (6.12) which remain bounded in D as |n| → +∞ necessarily belong to
the two-dimensional linear subspace Xc = Span { (cos t, 0) , (0, cos t) } for all
n ∈ Z. The spaceXc is denoted as center space and is the invariant space under
L associated with the double eigenvalue σ1 = −1. The spectral projection πc

on Xc reads πc u = (1/π)
∫ 2π

0 u(t) cos t dt cos t.
In the nonlinear case (6.11), one can locally prove a similar result where

the center space is replaced by a two-dimensional invariant center manifold
[29]. For μ ≈ 0, there exists a smooth local manifold Mμ ⊂ D (which can
be written as a graph over Xc) invariant under Fω and the symmetries R, T .
One has Mμ = {u ∈ D/u = uc +ψ(uc, μ), uc ∈ Xc ∩Ω}, where ψ : Xc ×R →
(I − πc)D is a smooth map satisfying ψ(uc, μ) = O(‖uc‖2 + ‖uc‖|μ|) and Ω is
a small neighborhood of 0 in D. More precisely, we have ψ( (a, b) cos t , μ ) =
(ϕ(b, a, μ) , ϕ(a, b, μ) ) (a, b ∈ R) where

ϕ(a, b, μ) = − 1
16
V (3)(0) cos (2t)

(
ab+

1
2
a2 − 7

2
b2
)

+ h.o.t. (6.13)

For μ ≈ 0, the center manifold Mμ contains all solutions un of (6.11)
staying in Ω for all n ∈ Z (small amplitude solutions). Their central component
uc
n = πc un is given by the two-dimensional mapping

uc
n+1 = f(uc

n, μ), (6.14)

where f(uc, μ) = Luc + πcN(uc + ψ(uc, μ), μ). The map f : Xc × R → Xc is
smooth in the neighborhood of 0 and inherits the symmetries of (6.9) (f(·, μ)
is reversible under R and commutes with T ). Setting uc

n = (an, bn) cos t, the
mapping (6.14) reads

an+1 = bn,
bn+1 = −an − 2bn − bnμ+ c1b

3
n + c2anb

2
n + 1

2c2a
2
nbn + h.o.t., (6.15)

where c1 = 1
2V

(4)(0)− 17
16 (V (3)(0))2, c2 = − 1

8 (V (3)(0))2.
Consequently, the problem of finding small amplitude solutions of (6.9) for

ω ≈ 2 reduces to the study of the two-dimensional reversible mapping (6.15).
Note that we are not limited to localized solutions of (6.9) (i.e. those satisfying
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lim
|n|→+∞

‖ un ‖D = 0) since the reduced mapping (6.15) describes the set of all

small amplitude solutions when μ ≈ 0. For μ ≈ 0, each small amplitude
solution of (6.15) corresponds to a solution yn of (6.8) given by

yn(t) = bn cos t+ ϕ(bn−1, bn, μ) (6.16)

with ω2 = 4 + μ in (6.8).

6.2.3 Infinite-Dimensional Maps with Unbounded Linear Part and
Spectral Separation

The above example suggests the following mathematical framework for study-
ing time-periodic oscillations in infinite one-dimensional lattices.

We consider a Hilbert space X and a closed linear operator L : X → X
of domain D (L is a priori unbounded). We equip D with the scalar prod-
uct 〈u, v〉D = 〈Lu,Lv〉X + 〈u, v〉X , hence D is a Hilbert space continuously
embedded in X . We denote by U × V a neighborhood of 0 in D × R

p and
consider a nonlinear map N ∈ Ck(U × V , X) (k ≥ 2) satisfying N(0, 0) = 0,
DuN(0, 0) = 0. We look for sequences (un)n∈Z in U satisfying

∀n ∈ Z, un+1 = Lun +N(un, μ) in X, (6.17)

where μ ∈ V is a parameter. In particular, u = 0 is a fixed point of (6.17) when
μ = 0. Note that the initial value problem for (6.17) is in general ill-posed.

We assume that L has the property of spectral separation, i.e. L satisfies
Assumption H1 below.

Assumption H1. The operator L has nonempty hyperbolic (|z| �= 1) and
central (|z| = 1) spectral parts. Moreover, there exists an annulus A = { z ∈
C , r ≤ |z| ≤ R } (r < 1 < R) such that the only part of the spectrum of L in
A lies on the unit circle.

The situation corresponding to Assumption H1 is sketched in Fig. 6.3.
Under Assumption H1, the hyperbolic part of the spectrum is isolated from
its central part. This assumption is essential in the proof of the center manifold
reduction theorem.

We do not require the center space Xc (invariant subspace under L corre-
sponding to the central part of the spectrum) to be finite-dimensional. How-
ever, the center manifold reduction theorem is more efficient in this case since
the local study of (6.17) is amenable to that of a finite-dimensional mapping.
The subspace Xc is finite-dimensional when the spectrum of L on the unit
circle consists in a finite number of eigenvalues with finite multiplicities.

The spectral projection πc on the center space can be defined in the fol-
lowing way (see, e.g. [44])

πc =
1

2iπ

∫

C(R)

(zI − L)−1 dz − 1
2iπ

∫

C(r)

(zI − L)−1 dz,
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�(r)

�(R)

Fig. 6.3. Spectrum of L (dots), unit circle (dashed) and oriented circles C(r)
and C(R)

where C(r) denotes the circle of center z = 0 and radius r (see Fig. 6.3). One
has πc ∈ L(X,D), Xc = πcX ⊂ D and πc L = Lπc. In the sequel we note
πh = I − πc and Dh = πhD.

The condition of spectral separation is satisfied in a large class of infinite
one-dimensional lattices where one looks for time-periodic solutions, e.g. in
multicomponent Klein–Gordon lattices [28] or diatomic FPU chains [32]. In
these examples, the center space is finite-dimensional and πc takes a simple
form in term of Fourier coefficients. These properties should be preserved in
higher-dimensional lattices with appropriate boundary conditions (e.g. peri-
odic) in the transverse directions.

We now state the center manifold reduction theorem for quasilinear maps
with spectral separation [28].

Theorem 6.2. Assume that L has the property of spectral separation (As-
sumption H1). Then there exist a neighborhood Ω × Λ of 0 in D × R

p and a
map ψ ∈ Ck(Xc × Λ, Dh) (with ψ(0, 0) = 0, Ducψ(0, 0) = 0) such that for all
μ ∈ Λ the manifold

Mμ = { u ∈ D/u = uc + ψ(uc, μ), uc ∈ Xc }

has the following properties.
(i) Mμ is locally invariant under L +N(., μ), i.e. if u ∈ Mμ ∩ Ω then Lu+
N(u, μ) ∈Mμ.
(ii) If (un)n∈Z is a solution of (6.17) and un ∈ Ω for all n ∈ Z, then un ∈Mμ

for all n ∈ Z and uc
n = πcun satisfies the recurrence relation in Xc

∀n ∈ Z, uc
n+1 = f(uc

n, μ), (6.18)

where f ∈ Ck((Xc ∩Ω)×Λ, Xc) is defined by f(., μ) = πc (L+N(., μ)) ◦ (I +
ψ(., μ)) and f(., μ) is locally invertible.
(iii) Conversely, if (uc

n)n∈Z is a solution of (6.18) such that uc
n ∈ Ω for all

n ∈ Z, then un = uc
n + ψ(uc

n, μ) satisfies (6.17).

This result reduces the local study of (6.17) to that of the recurrence rela-
tion (6.18) in the smaller space Xc, which is particularly interesting when Xc

is finite-dimensional.
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The center manifold reduction technique has the advantage of being a
constructive method, i.e. the Taylor expansion of the reduction function ψ at
(uc, μ) = 0 (and thus the expansion of f) can be computed at any order. One
computes the Taylor expansion of ψ by expanding each side of equation

ψ(Luc+πcN(uc+ψ(uc, μ), μ), μ) = Lψ(uc, μ)+πh N(uc+ψ(uc, μ), μ) (6.19)

with respect to (uc, μ) and identifying terms of equal order ((6.19) expresses
the fact that Mμ is invariant under L + N(., μ)). This procedure yields a
hierarchy of linear problems which can be solved by induction, starting from
the lowest order (see (6.13) and (6.15) for the first terms in the FPU system).
Since the method provides explicit expansions of ψ and f , one can in general
precisely describe the shape and symmetries of small amplitude bifurcating
solutions.

In addition, one can show that the invariances of (6.17) are preserved
throughout the reduction procedure. More precisely, if L+N(., μ) commutes
with a linear isometry T ∈ L(X) ∩ L(D) then Mμ is invariant under T and
f(., μ) also commutes with T .

In Sect. 6.2.2 we have considered a situation when (6.17) is reversible
with respect to a symmetry R ∈ L(D) (R2 = I). This means that if un is
a solution of (6.17), then Ru−n is also a solution. This situation arises when
the map (6.17) satisfies

((L+N(., μ)) ◦R)2u = u (6.20)

for all u ∈ R−1(U) such that LRu + N(Ru, μ) ∈ R−1(U). Property (6.20)
formally implies

if u ∈ D and LRu ∈ D, then (LR)2u = u (6.21)

((6.21) is the formal differentiation of (6.20) at u = 0). In the particular case
when U = D = X and L+N(., μ) is invertible, note that (6.20) can be written

R (L +N(., μ)) ◦R = (L+N(., μ))−1,

hence L +N(., μ) is conjugate to its inverse via the symmetry R. If (6.17) is
reversible under a symmetry R ∈ L(D), then under some technical assump-
tions given in [28], Mμ is invariant under R and f(., μ) inherits reversibility
in R.

Note that the property of local attractivity of center manifolds (when L has
no eigenvalue outside the unit disc) is not reviewed here. Indeed we are mainly
concerned with reversible mappings. Due to property (6.21), the spectrum of
their linear part has the invariance z → z−1, hence their hyperbolic spectral
part is located both inside and outside the unit disc.
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6.3 Center Manifold Reduction for Infinite-Dimensional
Differential Equations

It is well known [37, 45, 46] that the center manifold theorem for maps stated
in Sect. 6.2.1 has an analogue for differential equations in R

n

dx
dt

= Lx+N(x, μ), (6.22)

with L ∈ Mn(R), N ∈ Ck(Rn × R
p,Rn) (with k ≥ 2), N(0, 0) = 0,

DxN(0, 0) = 0. For μ = 0, (6.22) admits x = 0 as an equilibrium. One
defines Xc as the subspace spanned by the (generalized) eigenvectors of L
whose eigenvalues lie on the imaginary axis. If Xc �= {0}, there exists a local
invariant manifoldMμ of (6.22), which contains all small amplitude solutions
for μ ≈ 0, and can be written locally as a graph over the center space Xc (for
μ = 0, M0 is tangent to Xc at x = 0).

In this section, we examine the infinite-dimensional case, again focusing
on the context of reversible systems. The general theory which is (partly)
summarized in Sect. 6.3.2 originates from [35, 36, 42]. In the following section,
we start by an illustration of center manifold theory on a class of reversible
advance-delay differential equations. The material is issued from [18, 20, 21].

6.3.1 Example in Infinite Dimensions

We consider the KG system (6.3), and assume the interaction potential V
analytic in a neighborhood of x = 0, with the following Taylor expansion

V (x) =
1
2
x2 +

α

3
x3 +

β

4
x4 + O(|x|5), x→ 0. (6.23)

We search for solutions in the form of pulsating traveling waves satisfy-
ing (6.4). Problem (6.3)–(6.4) can be formulated as a (reversible) system of p
second-order differential equations with advance and delay:

d2

dt2

⎡

⎢⎢⎢⎢⎢⎢⎣

x1

...
xn
...
xp

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

V ′(x1)
...

V ′(xn)
...

V ′(xp)

⎤

⎥⎥⎥⎥⎥⎥⎦
= γ

⎡

⎢⎢⎢⎢⎢⎢⎣

x2(t)− 2x1(t) + xp(t+ T )
...

xn+1(t)− 2xn(t) + xn−1(t)
...

x1(t− T )− 2xp(t) + xp−1(t)

⎤

⎥⎥⎥⎥⎥⎥⎦
. (6.24)

In the following we restrict ourselves to the case p = 2 [20]. Our analysis
generalizes the one performed by Iooss and Kirchgässner [18], who treated the
case of traveling waves (p = 1). In this case, one obtains xn(t) = x0(t− nT ),
where the function x0 is determined by the scalar differential equation with
advance and delay:
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d2x0

dt2
+ V ′(x0) = γ (x0(t+ T )− 2x0 + x0(t− T )). (6.25)

For the more technical case p > 2 we refer the reader to [21].
In the case p = 2, solutions can be rewritten [20]:

xn(t) = w1( tT −
n−1

2 ) if n is odd, (6.26)
xn(t) = w2( tT −

n−1
2 ) if n is even

when w1 and w2 are solutions of the following differential advance-delay sys-
tem in the variable ξ = t

T −
n−1

2

d2

dξ2

[
w1

w2

]
+ T 2

[
V ′(w1)
V ′(w2)

]
= γT 2

[
w2(ξ − 1

2 )− 2w1(ξ) + w2(ξ + 1
2 )

w1(ξ + 1
2 )− 2w2(ξ) + w1(ξ − 1

2 )

]
.

(6.27)

We note that the solutions of (6.27) such that w1 = w2 correspond to
traveling wave solutions of (6.3), since xn(t) = xn−1(t − T

2 ). Besides, if V
is even then (6.27) admits symmetric solutions such that w1 = −w2. These
solutions correspond to solutions of (6.3) of the form

xn(t) = (−1)n+1w1

(
t

T
− (n− 1)

2

)
. (6.28)

These solutions are described by the scalar equation

d2w1

dξ2
+ T 2V ′(w1) = −γT 2

(
w1

(
ξ +

1
2

)
+ 2w1(ξ) + w1

(
ξ − 1

2

))
. (6.29)

We can reformulate the problem (6.27) as an evolution problem with
respect to the ξ variable in suitable function spaces. For this purpose, we in-
troduce as in [18] the variable U = (w1, w2, w

′
1, w

′
2, X1(ξ, v), X2(ξ, v))T, where

v ∈ [−1/2, 1/2] andX1(ξ, v) = w1(ξ+v), X2(ξ, v) = w2(ξ+v). Equation (6.27)
can be rewritten

dU
dξ

= Lγ,TU + T 2M(U), (6.30)

where

Lγ,T =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
α1 0 0 0 0 α2(δ1/2 + δ−1/2)
0 α1 0 0 α2(δ−1/2 + δ1/2) 0
0 0 0 0 ∂v 0
0 0 0 0 0 ∂v

⎞

⎟⎟⎟⎟⎟⎟⎠
, (6.31)

δaXi(ξ, v) = Xi(ξ, a), α2 = T 2γ, α1 = −T 2(1 + 2γ) and

M(U) = (0, 0, f(w1), f(w2), 0, 0)T, (6.32)
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f(u) = −αu2 − β u3 + h.o.t. (6.33)

We now consider (6.30) in appropriate function spaces. For this purpose we
introduce the Banach spaces

X = R
4 × (C0[−1/2, 1/2])2, (6.34)

D =
{
U ∈ R

4 × (C1[−1/2, 1/2])2/X1(0) = w1, X2(0) = w2

}
, (6.35)

Y =
{
U ∈ R

4 × (C1[−1/2, 1/2])2/X1 = w1 = X2 = w2 = 0
}
. (6.36)

The operator Lγ,T maps D into X continuously and M : D → Y is analytic
in a neighborhood of 0. We look for solutions of (6.30) in the class C0(R, D) ∩
C1(R, X).

We observe that the symmetry R on X defined by

R(w1, w2, w
′
1, w

′
2, X1(v), X2(v))T = (w1, w2,−w′

1,−w′
2, X1(−v), X2(−v))T

anticommutes with Lγ,T+T 2M . Therefore, if U(ξ) is a solution of (6.30) then
RU(−ξ) is also a solution. In that case the system (6.30) is said reversible
under R. This property is due to the invariance ξ → −ξ of (6.27).

We also notice the invariance of (6.30) under the permutation σ of the two
components (wi, w′

i, Xi), i = 1, 2 (invariant solutions under this symmetry
correspond to traveling waves).

Now we describe the spectrum of Lγ,T , which consists in isolated eigenval-
ues of finite multiplicity. The study of the spectrum is rather technical, so we
shall restrict ourselves to its qualitative description and refer to [20] for the
proofs of the results.

Linearizing (6.27) around (w1, w2) = (0, 0) and searching for solutions in
the form (w1, w2) = eiqξ(û1, û2)T (with q ∈ C) yields the following dispersion
relation

(−q2 + T 2(1 + 2γ))2 − 4(γT 2)2 cos2(q/2) = 0. (6.37)

Equation (6.37) gives the eigenvalues ±iq of Lγ,T . The spectrum of Lγ,T is
invariant under reflection with respect to the real and imaginary axis, and
unbounded on both sides of the imaginary axis (in addition Lγ,T is not bisec-
torial).

The central part of the spectrum is finite-dimensional and corresponds to
the solutions q ∈ R of (6.37). We sketch it on Fig. 6.4 (see [20] for a detailed
study of the spectrum, and in particular its description in the parameters
regions uncovered by Fig. 6.4).

The hyperbolic part of the spectrum (not represented in Fig. 6.4) is located
outside a band of width ν > 0 around the imaginary axis (ν depends on γ, T ).
Therefore, the hyperbolic spectral part is isolated from the central part.

Double roots q ∈ R of (6.37) satisfy

2q(−q2 + T 2(1 + 2γ)) = (γT 2)2 sin(q). (6.38)
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Fig. 6.4. On the right: location of eigenvalues iq de Lγ,T on the imaginary axis
(only the upper part of the axis is represented). Symbols Σ1, Σ2, Σ4 refer to different
curves in the plane of parameters T, γ sketched on the left (these curves are repre-
sented by bold or dotted lines) and Σ0, Σ3 refer to regions delimited by such curves.
Eigenvalues iq of Lγ,T are real solutions of (6.37) (here q > 0). A simple eigenvalue
is represented by a point (•) and a double one by a cross (×). The latter are semi-
simple in the case of curves Σ4, and nonsemi-simple in the case of curves Σ1, Σ2.
The curve Δ corresponding to the bifurcations studied in this section is represented
by the bold line comprising Σ1 and Σ2. In addition to Σ1, Σ2, Σ4, other bifurcation
curves (corresponding to additional changes in the spectrum on the imaginary axis)
are represented by dotted lines

Solutions of (6.37)–(6.38) correspond to double eigenvalues of Lγ,T (except
for isolated values of (T, γ) where they correspond to triple eigenvalues [20]).
Double nonsemi-simple eigenvalues show up for parameters T, γ taken on an
infinite set of curves Γ1,Γ2,Γ3, . . . forming “tongues” in the parameter plane.
A part of the first curves is represented in Fig. 6.4 by the bold line (the curves
can be continued to higher values of γ following the dotted lines). The bold
line actually represents the boundary of the region located below the tongues
Γk. We shall denote this curve by Δ.

The existence of double roots as parameters belong to Γk corresponds
to the appearance (or disappearance) of a pair of real roots of (6.37) when
parameters (T, γ) cross the curve Γk. More precisely, under the curve Δ (see
region Σ0 in Fig. 6.4), real solutions of (6.37) consist in two pairs of simple
roots ±q1, ±q2 (they coincide on the curves denoted Σ4, leading to a pair of
semi-simple double eigenvalues). An additionnal pair of real (double) roots
±q0 appears when we reach Δ from below (see the curves labelled by Σ1,Σ2

in Fig. 6.4). This corresponds to two pairs of simple hyperbolic eigenvalues of
Lγ,T colliding on the imaginary axis and leading to a pair of non semi-simple
double eigenvalues ±iq0 (see the spectra labelled by Σ1,Σ2 in Fig. 6.4, right).

In the following, we exclude from Δ the neighborhoods of points where
sq0 + rq1 + r′q2 = 0 for s, r, r′ ∈ Z and 0 < |s| + |r| + |r′| ≤ 4 (strong
resonances), and we note Δ0 this new set. We choose then (γ, T ) ≈ (γ0, T0)
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with (T0, γ0) ∈ Δ0. The above nondegeneracy condition is required to have
the simple normal form structure provided in (6.40), as one considers the flow
on a center manifold for (γ, T ) ≈ (γ0, T0).

Small amplitude solutions of (6.27) correspond to solutions of (6.30) on
a center manifold Mγ,T , invariant by the flow [36], eight-dimensional for
(γ, T ) ≈ (γ0, T0). The dimension ofMγ,T is equal to the number of “marginal”
modes of (6.27) linearized around (w1, w2) = 0 with (γ, T ) = (γ0, T0) (we call
“marginal”mode a mode which does not diverge exponentially when ξ → +∞
or −∞). Besides, the coordinates uc = (A,B,C1, C2, Ā, B̄, C̄1, C̄2)T ∈ C

8 of
solutions on Mγ,T are given by a reversible differential equation. The latter
is simplified when written in normal form [45].

In summary, applying the center manifold reduction theorem to the
evolution problem (6.30) we have obtained a reduction result for the orig-
inal system (6.27). The reduction result can be stated as follows (see [20]
for the computation of expression (6.39) and the justification of the normal
form (6.40)). Fix (T0, γ0) ∈ Γm∩Δ0. For (γ, T ) ≈ (γ0, T0), the small amplitude
solutions of (6.27) have the form
(
w1(ξ)
w2(ξ)

)
= A(ξ)

(
(−1)m

1

)
+C1(ξ)

(
−1
1

)
+C2(ξ)

(
1
1

)
+c.c.+Ψ(uc(ξ), γ, T ),

(6.39)
where Ψ : C

8×R
2 → R

2 is a Ck function in a neighborhood of (0, γ0, T0) and
Ψ(uc, γ, T ) = O(‖uc‖2+‖uc‖(|γ−γ0|+|T−T0|)) when (uc, γ, T )→ (0, γ0, T0).

Coordinates (A,B,C1, C2) are given by a reversible differential equation
written in normal form (normal form of order 3):

dA
dξ

= iq0A+B + iAP(|A|2, I, Q, γ, T ) + h.o.t.,

dB
dξ

= iq0B + [iBP +AS](|A|2, I, Q, γ, T ) + h.o.t.,

dCj
dξ

= iqjCj + iCjQj(|A|2, I, Q, γ, T ) + h.o.t., (6.40)

j = 1, 2,

where Q is the vector Q = (|C1|2, |C2|2), I = i(AB̄−ĀB) and P ,S,Qj(., γ, T )
are polynomials with real coefficients (which are Ck with respect to (γ, T ) ≈
(γ0, T0)). The principal part of (6.40) is a polynomial of degree 3 inA,B,C1, C2

and complex conjugates. Higher order terms are O(‖uc‖4).
Equation (6.40) is reversible under the symmetry

R : (A,B,C1, C2) �→ (Ā,−B̄, C̄1, C̄2),

and equivariant under the isometry

σ : (A,B,C1, C2) �→ ((−1)mA, (−1)mB,−C1, C2).
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Polynomials P and S in the normal form (6.40) have the form

P = r1(γ, T ) + r2 |A|2 + r3 I + O(|μ|‖(A,B)‖2 + ‖(C1, C2)‖2), (6.41)

S = s1(γ, T ) + s2 |A|2 + s3 I + O(|μ|‖(A,B)‖2 + ‖(C1, C2)‖2), (6.42)

where we note μ = |T − T0| + |γ − γ0| ≈ 0, ri, si ∈ R and r1(γ0, T0) =
s1(γ0, T0) = 0. For (T, γ) ≈ (T0, γ0) ∈ Γm

⋂
Δ0 and when (T, γ) belongs

to the region of the parameters plane located below Δ (see Fig. 6.4), we
have s1 > 0 and the linear part of (6.40) possesses two symmetric pairs of
hyperbolic eigenvalues close to ±iq0, and two pairs of purely imaginary simple
eigenvalues close to ±iq1,±iq2.

Besides, the coefficient s2 of (6.42) (corresponding to a cubic term of the
nonlinear system (6.40)) is given by the expression [20]
(

2 − q0
tan(q0/2)

)
s2 = T 2

0

(
−6β + 8α2 − 4α2T 2

0

2γ0T 2
0 cos(q0) − T 2

0 (1 + 2γ0) + 4q2
0

)
,

(6.43)

where the coefficients α, β appear in the Taylor expansion of V at the origin
(see (6.23)).

Consequently, the problem of finding small amplitude solutions of (6.27)
for (γ, T ) ≈ (γ0, T0) reduces to the study of the eight-dimensional reversible
differential equation (6.40). We are not limited to localized solutions of (6.27)
since (6.40) describes the set of all small amplitude solutions when (γ, T ) ≈
(γ0, T0).

6.3.2 Infinite-Dimensional Differential Equations with Spectral
Separation

We consider an infinite-dimensional differential equation in a Banach space
X , having the form

dx
dt

= Lx+N(x, μ), (6.44)

where L : D ⊂ X → X is a closed linear operator with domain D (L is
a priori unbounded). We equip D with the graph norm. The nonlinear term
N maps D × R

p into a Banach space Y continuously embedded in X , and
N ∈ Ck(D×R

p, Y ) (k ≥ 2), N(0, 0) = 0, DxN(0, 0) = 0. Moreover μ ∈ R
p is

a parameter. We look for solutions of (6.44) in C0(R, D) ∩ C1(R, X).
In what follows we denote by L(X,D) the set of bounded linear operators

from X into D and note L(X) as a shortcut for L(X,X).
One makes the following spectral assumptions on L. One requires on the

one hand a spectral separation between the central and hyperbolic parts of
the spectrum, and on the other hand the finite-dimensionality of the center
space.
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Assumption H2: The spectrum of L on the imaginary axis consists in a fi-
nite number of isolated eigenvalues, each with a finite-dimensional generalized
eigenspace.

Assumption H2 implies [44] the existence of a spectral projection πc cor-
responding to the purely imaginary part of the spectrum, i.e. a continuous
projection onto the finite-dimensional center space which commutes with L.
It can be written

πc =
1

2iπ

∫

C
(zI − L)−1 dz,

where C denotes a closed path of index 1 surrounding the purely imaginary
part of the spectrum, and not including any other elements. One has πc ∈
L(X,D), the center space is given by Xc = πcX ⊂ D and πc L = Lπc. In
the sequel we note πh = I − πc and Xh = πhX , Dh = πhD, Yh = πh Y ,
Lh = L|Xh .

We also need sufficient regularity for the solutions x(t) ∈ Xh of the affine
differential equation,

dx
dt

= Lh x+ f(t) (6.45)

when the inhomogeneous term f(t) lies in Yh. In what follows we denote
by Ckb (R, E) the space of functions R → E with bounded and continuous
derivatives up to order k.

Assumption H3: For all f ∈ C0
b(R, Yh), (6.45) has a unique solution x in

C0
b(R, Dh) ∩ C1

b(R, Xh). Moreover, the application f �→ x is continuous from
C0

b(R, Yh) into C0
b(R, Dh).

In the case of maps [28], the property of spectral separation H1 is equiv-
alent to a property similar to H3. This is not true however in the case of
infinite-dimensional differential equations, where the property of spectral sep-
aration is necessary but not sufficient for property H3 to be satisfied.

Note that Assumptions H2 and H3 are automatically satisfied if (6.44)
is finite-dimensional. Moreover, in many applications the operator L is bi-
sectorial and Assumption H3 follows from simpler resolvent estimates [35,
36]. However, reversible advance-delay differential equations typically involve
linearized evolution operators which are not bi-sectorial (as in Sect. 6.3.1),
which requires different techniques to prove property H3 [18].

We note that property H3 (formulated in a space of bounded functions of
t) implies by perturbation [20, 47] a similar property in the spaces of expo-
nentially growing functions used in reference [36] (see hypothesis (ii) p. 127),
provided the exponential growth rate is chosen small enough.

The center manifold theorem states the following [36].

Theorem 6.3. Assume properties H2 and H3 are satisfied. There exists a
neighborhood U ×V of (0, 0) in D×R

p and a map ψ ∈ Ck(Xc×R
p, Dh) (with

ψ(0, 0) = 0, Dψ(0, 0) = 0) such that for all μ ∈ V the manifold
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Mμ = { x ∈ D/x = xc + ψ(xc, μ), xc ∈ Xc }

has the following properties.
(i) Mμ is a local integral manifold for (6.44).
(ii) If x : R → D is a solution of (6.44) and x(t) ∈ U ∀t ∈ R then x(t) ∈Mμ

for all t ∈ R and xc = πcx is a solution of

dxc

dt
= Lxc + πcN(xc + ψ(xc, μ), μ). (6.46)

(iii) If xc : R → Xc is a solution of (6.46) with xc ∈ U ∀t ∈ R, then x =
xc + ψ(xc, μ) is a solution of (6.44).

In addition, we give some comments in the case of a system with symme-
tries (as in the example of Sect. 6.3.1). If (6.44) is equivariant under a linear
isometry T on X (i.e. L + N(., μ) commutes with T ), then Mμ is invariant
under T and (6.46) inherits the equivariance under T . Moreover, if (6.44) is
reversible under an unitary symmetry R on X (i.e. L+N(., μ) anticommutes
with R), then Mμ is invariant under R and (6.46) is also reversible under R.

Note that Theorem 6.3 does not describe the local attractivity of the center
manifold, which occurs when L has no eigenvalue with strictly positive real
part. Indeed the present work is mainly concerned with reversible systems, in
which the spectrum of L is symmetric with respect to the imaginary axis.

6.4 Breathers and Traveling Breathers in Nonlinear
Oscillator Chains

We have seen in Sect. 6.2.2 that small amplitude time-periodic oscillations in
the FPU lattice can be described as orbits of a map in a loop space, restricted
to a finite-dimensional invariant center manifold. In the same way, small am-
plitude pulsating traveling waves in the KG lattice can be seen as trajectories
of an infinite-dimensional differential equation, lying on a finite-dimensional
center manifold (Sect. 6.3.1). In this section, we study the related maps and
flow on the corresponding center manifolds, focusing mainly on the existence
of homoclinic orbits (corresponding to spatially localized oscillations of the
lattice).

The case of FPU lattices is examined in Sect. 6.4.1, where we investi-
gate the existence of breathers and some other types of nonlinear oscillations.
Sect. 6.4.2 examines the existence of nanopterons in KG lattices.

6.4.1 Breathers and “Dark” Breathers in Fermi–Pasta–Ulam
Lattices

Reduced Mapping on a Center Manifold

We now study a class of small amplitude bifurcating solutions of the map-
ping (6.15), corresponding to trajectories of (6.11) on a local center manifold.
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For this purpose we first write (6.15) in normal form, i.e. we perform a
polynomial change of variables close to the identity which simplifies (6.15)
by keeping only its “essential” terms. The transformation an = P (αn), bn =
P (βn), P (x) = x− c2

12x
3 yields the normal form

αn+1 = βn, βn+1 + 2βn + βn−1 = h(βn−1, βn, μ), (6.47)

with

h(βn−1, βn, μ) = −μβn +Bβ3
n + O( |βn| ((|βn−1|+ |βn|)2 + |μ|)2),

B =
1
2
V (4)(0)− (V (3)(0))

2
(6.48)

(the principal part of h does not depend on βn−1 any more). Note that this
transformation preserves the symmetries of (6.15). In particular, the second
equation in (6.47) has the invariance n→ −n.

As a second step, setting un = (−1)nβn allows us to recover the case of
a bifurcation at a double eigenvalue +1 (this transformation yields an au-
tonomous system due to the symmetry −I in (6.47)). We obtain

un+1 − 2un + un−1 = h(un−1,−un, μ), (6.49)

h (un−1,−un, μ) = μun −Bu3
n + h.o.t. (6.50)

For studying small solutions of (6.49) when μ ≈ 0 (including homoclinic or
heteroclinic ones), it is practical to consider Un = (un, vn), vn = un − un−1

and write (6.49) in the form

Un+1 = Gμ(Un), Gμ(Un) =
(

1 1
0 1

)
Un + h (un − vn,−un, μ)

(
1
1

)
. (6.51)

The invariance n → −n in (6.49) implies that (6.51) is reversible under the
symmetry R1 (u, v) = (u − v,−v), the fixed set Δ1 = fix(R1) being the axis
v = 0.

The map (6.51) can be investigated using an approximation by a flow
(see [48] and references therein). If ϕμ denotes the time-one map of the flow
generated by the integrable vector field

du
dt

= v,
dv
dt

= μu− Bu3, (6.52)

there exist a local diffeomorphism hμ close to the identity such that

Gμ = hμϕμh
−1
μ + O( (|u|+ |v|) ((|u|+ |v|)2 + |μ|)2). (6.53)

When μ and B have the same sign, the vector field has two nonzero symmetric
equilibria. It has two symmetric orbits homoclinic to 0 when μ > 0 and B > 0
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(then the nonzero equilibria are elliptic). Moreover, there exist two symmetric
heteroclinic orbits connecting the non-zero equilibria for μ < 0 and B < 0.

The persistence of homoclinic solutions for (6.51) when B > 0 and μ > 0
is small enough follows from the reversibility of (6.51), and the proof is based
on the approximation (6.53). More precisely, the invariance n→ −n in (6.18)
implies that (6.51) is reversible under the symmetry R1 (u, v) = (u − v,−v)
and the involution R2 = R1Gμ (i.e. (GμRi)

2 = I). By perturbation (starting
from the vector field), one shows that the unstable manifold at Un = 0 has
transversal intersections U1

1 and U2
0 respectively with the invariant set under

R1 and R2. Then the corresponding solutions U1
n and U2

n are homoclinic to
0 since R1U

1
−n+2 = U1

n and R2U
2
−n = U2

n. Moreover, their first components
satisfy u1−n+1 = u1

n and u2−n = u2
n. The persistence of heteroclinic solutions

for B < 0 and μ < 0 small enough follows from similar arguments, but we use
instead R3 = −R1 and R4 = −R2. One finds heteroclinic solutions U3

n and
U4
n connecting the nonzero equilibria, with R3U

3−n+2 = U3
n and R4U

4−n = U4
n.

Their first components satisfy u3
−n+1 = −u3

n and u4
−n = −u4

n.
We sum up these results in the following lemma [28, 29].

Lemma 6.1. Assume B = (1/2)V (4)(0) − (V (3)(0))
2 �= 0. For μ ≈ 0, the

recurrence relation (6.15) has the following solutions.
(i) For μ > 0 and B > 0, (6.15) has at least two homoclinic solutions b1n, b2n
(and also −b1n, −b2n) such that limn→±∞ bin = 0. These solutions have the sym-
metries b1−n+1 = −b1n, b2−n = b2n and satisfy 0 < (−1)n bin ≤ C μ1/2 |σ1|−|n|,
with |σ1| = 1 + O(μ1/2) > 1.
(ii) If μ and B have the same sign, (6.15) has a period 2 solution b0n =
(−1)nb∗, with b∗ = O(|μ|1/2).
(iii) For μ < 0 and B < 0, (6.15) has at least two heteroclinic solutions b3n, b

4
n

(and also −b3n, −b4n) such that limn→±∞ |bin ∓ b0n| = 0. These solutions have
the symmetries b3−n+1 = b3n and b4−n = −b4n. Moreover, b3n, b4n are O(|μ|1/2)
as n→ ±∞ and O(|μ|) for bounded values of n.

Note that for B < 0 and μ > 0 (μ ≈ 0), the local stable and unstable man-
ifolds of (an, bn) = 0 do not intersect and thus (6.15) has no small amplitude
homoclinic solution.

Breathers and “Dark” Breathers Corresponding to Homoclinics

According to Theorem 6.2, each solution bin of Lemma 6.1 corresponds to a
solution yin of (6.8), given by

yin(t) = bin cos t+ ϕ(bin−1, b
i
n, μ) (6.54)

with ω2 = 4 + μ in (6.8). This leads to the following result [28, 29].

Theorem 6.4. Suppose B = 1
2 V

(4)(0) − (V (3)(0))
2 �= 0. For ω ≈ ω0 = 2,

problem (6.8) admits the following solutions with yn ∈ H2(R/2πZ) for all
n ∈ Z (with yn even in t, and having 0 time-average).
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(i) For ω > ω0 and B > 0, (6.8) has two homoclinic solutions y1
n, y

2
n (with

the symmetric solutions T y1
n, T y2

n) such that limn→±∞ ‖yin‖H2 = 0. These
solutions satisfy y1

−n+1 = T y1
n, y

2
−n = y2

n and have the form

yin = bin cos t+ O(|ω − ω0|), (6.55)

where 0 < (−1)n bin ≤ C (ω − ω0)1/2 |σ1|−|n|, |σ1| = 1 + O((ω − ω0)
1/2) > 1.

(ii) If ω−ω0 and B have the same sign, (6.8) has a solution y0
n with period 2

in n, having the form y0
n = y(t+ nπ), with y(t) = b∗ cos t+ O(|ω−ω0|) (with

y even in t, and having 0 time-average) and b∗ = O(|ω − ω0|1/2).
(iii) If ω < ω0 et B < 0, (6.8) admits two heteroclinic solutions y3

n, y
4
n

(together with T y3
n, T y4

n) such that limn→−∞ ‖yin − Ty0
n‖H2 = 0,

limn→+∞ ‖yin − y0
n‖H2 = 0. These solutions satisfy y3

−n+1 = y3
n and y4

−n =
T y4

n. Moreover, ‖y3
n‖H2 , ‖y4

n‖H2 are O(|ω−ω0|1/2) when n→ ±∞ and O(|ω−
ω0|) for bounded values of n.

Solutions y1
n, y2

n correspond to breather solutions of (6.1), i.e. time-periodic
oscillations (with frequency ω) satisfying (6.5) (Figure 6.5 shows a typical
solution profile). Their amplitude tends to 0 when the frequency ω → ω0,
and y1

n, y2
n decay exponentially as n → ±∞ (the decay is slow for ω ≈ ω0

since |σ1| ≈ 1). One can check that the total energy (6.2) of the corresponding
solutions of (6.1) tends to 0 as ω → ω0.

Remark 6.1. If B < 0, small amplitude breathers (with yn even in t, and
having 0 time-average) bifurcating from yn = 0 as ω → ω+

0 do not exist.
This is due to the fact that the map (6.15) does not admit small amplitude
homoclinics.

Solution y0
n corresponds to a spatially periodic traveling wave (of period 2

with respect to n), whose amplitude tends to 0 when ω → ω0. Its time-average
is 0 and a translation of one site on the lattice is equivalent to an half-period
phase shift (y0

n+1(t) = y0
n(t + π)). Note that the associated displacements

x0
n (solutions of (6.1) corresponding to y0

n) are in general different from the
binary oscillations solutions of (6.1). These solutions are defined by xbn(t) =
(−1)n f(t) with f ′′+V ′(2f)−V ′(−2f) = 0 and f close to 0. Indeed, the time-
average of the relative displacements zbn = xbn − xbn−1 is 0 whereas in our case
the time-average of the interaction forces V ′(x0

n−x0
n−1) is zero. Nevertheless,

these two families of solutions coincide when the potential V is even.
Solutions y3

n, y
4
n are called “dark” breathers [49], due to the fact that their

amplitude is almost vanishing at some point of the lattice and is larger at
infinity (see Fig. 6.6 for an illustration), breather solutions having opposite
characteristics. The adjective “dark” originates from the context of nonlinear
optics where such waves have been also considered. The amplitude of these
solutions is O(|ω−ω0|1/2) when n→ ±∞ (they converge to y0

n, with an index
shift at −∞) and their amplitude is O(|ω − ω0|) at the center.
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It is interesting to compare the sign of the bifurcation coefficient B to the
hardness of the potential V in a neighborhood of x = 0. Recall that a potential
V (such that V ′(0) = 0, V ′′(0) = 1) is hard in a neighborhood of x = 0 if

3
5
V (4)(0)− (V (3)(0))2 > 0. (6.56)

The potential V is soft if 3
5V

(4)(0)− (V (3)(0))2 < 0. One can check that if V
is soft then B < 0. It is interesting to notice that conditions (6.56) and B > 0
are not equivalent but rather close nevertheless.

The condition B > 0 corresponds to the modulational instability of the
nonlinear normal modes of frequency ω ≈ ω0, yielding their spatial localization
(see [50] for a formal study through multi-scale expansions). This condition
leads to a similar instability for binary oscillations [51].

A numerical study has been performed in [34], where the solutions given by
Theorem 6.4 have been followed up numerically in the high amplitude regime.
More precisely, this study concerns polynomial interaction potentials

V (u) =
u2

2
+
α

3
u3 +

β

4
u4, (6.57)

and breather solutions are approximated by spatially periodic solutions having
large periods. When ω ≈ ω0 (we have here ω0 = 2), the principal part of y2

n

reads

y2
n(t) 
 (−1)n

√
2μ
B

cos t
cosh(n

√
μ)

(6.58)

and one can obtain a similar expression for y1
n (see [34], Sect. II). Expres-

sion (6.58) is obtained by solving the differential equation (6.52), which yields
after discretization the principal part of (6.49)–(6.50). Figure 6.5 compares
a numerically computed breather profile and approximation (6.58), ω being
close to ω0. The solution is weakly localized ( its “support” extends on approx-
imately 30 sites on the lattice). When ω goes far away from ω0, the solution be-
comes more localized and its amplitude increases, hence approximation (6.58)
becomes less accurate. Nevertheless, one observes (see for instance [34], Fig. 3)
that the relative displacements zn = xn−xn−1 are still precisely approximated
by the right side of (6.58), even for highly localized solutions concentrated ap-
proximately on six sites on the lattice (note that yn and zn are equal at leading
order in the small amplitude regime, since V ′(zn) = zn + O(z2

n)).
A similar study has been performed in the case of dark breathers [34]. The

approximation derived in this context is

y3
n(t) 
 (−1)n

√
μ

B
tanh

(
(−n+ 1/2)

√−μ√
2

)
cos(t). (6.59)

Figure 6.6 compares a numerically computed dark breather solution and the
approximation (6.59), ω being close to ω0 (in Fig. 6.6, the righ side of (6.59)
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Fig. 6.5. Comparison between the numerically computed solution y2
n for the po-

tential (6.57) (circles) and the approximation (6.58) (dotted lines), at time t = 0. In
this example, B = 2.64, α = −0.3 and ω = 2.01 (μ ≈ 0.04)

is actually compared to the relative displacements zn, very close to yn at this
amplitude). Once again, the approximation remains valid for steeper kink
envelopes (see [34], Fig. 11).

Finally, note that for β > 0 and B < 0, there exist breather solutions
whose energy and amplitude do not tend to 0 when ω → ω0 (see, e.g. [34]
for numerically computed profiles). The existence of these solutions is in ac-
cordance with the results [30, 31], based on variational techniques (condition
β > 0 implies that V (u) is super-quadratic when u → ±∞). The fact that
the breather amplitude does not tend to 0 as ω → ω0 is a consequence of the
remark following Theorem 6.4. The situation is sketched in Fig. 6.7.

The spectral stability of the above mentioned breather solutions has been
studied in several works for potential (6.57), see e.g [34, 52, 53]. The spectral
stability of dark breathers has been studied in reference [34].
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Fig. 6.6. Dark breather solution of (6.1) for potential (6.57) with α = 0, β = −1
and ω = 1.99. We represent relative displacements zn = xn − xn−1 at time t = 0.
This profile corresponds to the solution y3

n of Theorem 6.4. Circles stand for a
numerically computed solution and dashed lines for an analytical approximation of
zn (right hand side of (6.59))
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Fig. 6.7. Energy (6.2) of breather solutions of (6.1) as a function of their frequency
ω, for potential (6.57) with β = 1. The dashed line corresponds to the case α =
−1 (B < 0). The minimal energy for the numerically computed breather family
is reached for ω ≈ 2.02 and equal to H ≈ 0.95. Continuous lines correspond to
α = −0.6 and α = 0 (B > 0) (from top to bottom). In that case, there exist
breather solutions with arbitrary small energy

6.4.2 Traveling Breathers in Klein–Gordon Lattices

Local Analytical Study

As seen in Sect. 6.3.1, system (6.3)–(6.4) taken for p = 2 reduces locally (for
parameter values (T, γ) near Δ0) to a eight-dimensional reversible normal
form (6.40), which provides the coordinates of small amplitude solutions on
a center manifold. In what follows, we shall describe bifurcating homoclinic
solutions of this reduced system, following [20].

The principal part of the normal form (6.40) (obtained by neglecting
the terms of order ≥ 4) is integrable. Indeed, fixing the first integrals |Ci|2
(i = 1, 2) of the truncated system allows one to recover the classical 1:1 re-
versible resonance case [54]. If s2(γ0, T0) < 0, the truncated normal form ad-
mits solutions homoclinic to 0, which bifurcate from 0 when (T, γ)→ (T0, γ0).
By assigning nonzero (and small enough) values to the first integrals |Ci|2,
one obtains also solutions homoclinic to periodic orbits and 2−tori. Close to
Γ2k+1, homoclinic solutions to 0 correspond to approximate solutions of (6.3)
in the form of pulsating solitary waves (close to Γ2k, we have bifurcations of
solitary waves). Solutions homoclinic to periodic orbits and 2-tori correspond
to nanopterons.

We now examine the problem of persistence of the homoclinics as higher
order terms are taken into account in the normal form, which provides exact
solutions of (6.3)–(6.4) when this property is satisfied. The case of solitary
waves (with an oscillatory tail) bifurcating near Γ2k has been addressed by
Iooss and Kirchgässner. For pulsating solitary waves bifurcating near Γ2k+1,
one obtains a persistence result in the case when V is even (the general case
is still open). This result is summarized below.
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We fix (T0, γ0) ∈ Δ0

⋂
Γ2k+1 such that s2(γ0, T0) < 0 (for the following

persistence results to apply, one has to avoid in addition certain resonant
cases corresponding to exceptional values of the parameters [55]). We consider
(γ, T ) ≈ (γ0, T0), (T, γ) being chosen under the curve Δ in the parameter plane
(see Fig. 6.4). If V is even, the full normal form (6.40) inherits an invariance
under −I, hence one has also the invariance under −σ. Consequently, one
can search for solutions on the invariant subspace Fix(−σ) where C2 = 0.
Corresponding solutions of (6.27) satisfy w2 = −w1, which gives solutions
of (6.3)–(6.4) having the property

xn+1(t) = −xn
(
t− T

2

)
. (6.60)

These solutions satisfy the simpler scalar (6.29).
Restricting to the invariant subspace C2 = 0, there remains only one

pair of simple purely imaginary eigenvalues (close to ±iq1) in addition to
weakly hyperbolic ones. This situation is denoted as reversible (iq0)2iq1 (near-)
resonance and has been treated in [55]. On Fix(−σ), small amplitude reversible
solutions under R or −R homoclinic to a periodic orbit persist for the full
normal form, above a critical size of the limiting periodic orbit [55]. This
minimal size is O[exp(−c/μ1/2)], c > 0. There exist four families of reversible
solutions under R of this type, since each component (A,B) and C1 can be
changed into its opposite (the same holds for reversible solutions under −R).
Fixing (γ, T ) ≈ (γ0, T0), these reversible solutions appear in one-parameter
families, parametrized by the amplitude of the limiting periodic orbit. On
the contrary, reversible solutions homoclinic to 0 do not generically persist
for the full normal form [55]. However their persistence is a codimension-1
phenomenon, hence such solutions may exist if parameters (T, γ) are chosen
on some isolated curves in the parameter plane.

We sum up the above results in the following theorem [20].

Theorem 6.5. We fix (T0, γ0) ∈ Δ0

⋂
Γ2k+1 such that s2(γ0, T0) < 0. We

consider parameter values (T, γ) ≈ (T0, γ0) below the curve Δ0 in the parame-
ter plane (Fig. 6.4). Then the principal part of the normal form (6.40) admits
small amplitude reversible solutions (under R or Rσ) homoclinic to 2−tori.

If V is even, the full normal form (6.40) admits C2 = 0 as an invari-
ant subspace. On this subspace (except for (T0, γ0) on a subset of Δ0

⋂
Γ2k+1

with zero Lebesgue measure corresponding to resonant cases), the full normal
form (6.40) admits small amplitude reversible solutions (under ±R), homo-
clinic to periodic orbits. These solutions correspond to exact pulsating solitary
waves for system (6.3), superposed at infinity on periodic oscillations, and
such that xn+1(t) = −xn(t− T

2 ). For a given value of (γ, T ), these reversible
solutions exist in one-parameter families, parametrized by the amplitude of
oscillations at infinity. The lower bound of this amplitude is O[exp(−c/μ1/2)],
where μ = |T − T0|+ |γ − γ0|, c > 0.
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Solutions of Theorem 6.5 correspond to fixing p = 2 in (6.4). The case
p > 2 is examined in reference [21]. The simplest bifurcation yields a normal
form having a similar structure, with p pairs of simple purely imaginary eigen-
values in addition to the bifurcating pair ±iq0. Reversible homoclinic orbits
to p-tori exist for the truncated normal form, but their persistence for the
full equation remains a nontrivial open problem. Consequently, only approxi-
mate solutions of (6.3)–(6.4) (corresponding to nanopterons) are obtained in
that case.

There remains to study the sign of s2 as parameters (γ, T , coefficients of V )
are varied. This coefficient determines (for s2 < 0) the existence of homoclinic
solutions for parameter values close to the curves Γm. Here we only describe
the even potential case (hence α = 0), and refer the reader to [20] for the
general case. Figure 6.8 provides a summary of the situation. If β > 0 (hard
potential), homoclinic bifurcations occur on the left side of curves Γm, and
on the right side if β < 0 (soft potential). This comes from the fact that the
multiplicative factor (2− q0

tan(q0/2)
) in (6.43) changes its sign at the cusp point

on Γm.

Numerical Computation of Waves in the High-amplitude Regime

In this section, we numerically solve system (6.27) beyond the small amplitude
regime. Results are taken from reference [24].
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Fig. 6.8. This figure treats the case of an even potential V . In the normal
form (6.40), coefficient s2 (determined by expression (6.43)) is negative for β > 0
with (T0, γ0) lying on the left side of a curve Γm, and for β < 0 with (T0, γ0) lying on
the right side. For s2 < 0 and parameter values (T, γ) ≈ (T0, γ0) below Γm (dashed
regions for β > 0, dotted ones for β < 0), the principal part of the normal form (6.40)
admits homoclinic orbits to 0, and families of solutions homoclinic to 2-tori or pe-
riodic orbits. Families of reversible solutions homoclinic to certain periodic orbits
persist for the full normal form, as stated by Theorem 6.5
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We consider periodic boundary conditions wi(ξ + M) = wi(ξ). When M
is large, we end up with good approximations of spatially localized solutions,
whose period is “infinite”. We use a finite-difference scheme and solve the re-
sulting non linear algebraic system of equations by an hybrid Powell method
[56]. The convergence of this scheme needs a good initial guess. We compute
a family of solutions depending on T (γ being fixed) by continuation from
a critical value T0 corresponding to our local analysis. The center manifold
reduction provides a leading order approximation of bifurcating homoclinics,
which is used as an initial guess. We refer the reader to [24] for further de-
tails on this numerical method. Another technique which can be used for the
computation of solitary waves exploits a modulational instability [24, 57].

To solve the advance-delay problem, we fix (T0, γ0) ∈ Γ1 and we vary the
parameter μ = |T − T0|, γ = γ0 being fixed. We numerically solve (6.27)
and (6.29) by continuing the pulsating solitary waves (initally computed for
μ ≈ 0) in the high amplitude regime.

We first consider the case of an even potential V (x) = 1
2x

2 + β
4x

4 and
compute solutions of (6.29). Figure 6.9 presents some solution profiles. The
left column refers to a hard potential V (x) = 1

2x
2 + 1

24x
4, and the right one

a soft one V (x) = 1
2x

2 − 1
4x

4. One can observe the difference between the
oscillation frequencies of the central part of the solutions (close to q0 for small
amplitudes) and the frequency of the tail (close to q1). The hardness of the
potential determines which one of the two frequencies is the highest. Besides,
we numerically matched both sides of the solution tail to a periodic solutions
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Fig. 6.9. Examples of localized solutions of (6.29) for potentials V (x) = 1
2
x2+ β

4
x4.

Left figure: β = 1/6, γ = γ0 ≈ 0.83, T0 ≈ 5.59 and T = 5.5. Right figure: β = −1,
γ = γ0 ≈ 0.9, T0 ≈ 6.63 and T = 7.4
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Fig. 6.10. Pulsating solitary wave solutions of (6.3)–(6.4) with p = 2, corresponding
to profiles of Fig. 6.9. The solution is represented as a function of n, for t = 0. Left
figure: V (x) = 1

2
x2 + 1

24
x4, T = 5.5, γ = γ0 ≈ 0.83, T0 ≈ 5.59. Right figure:

V (x) = 1
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4
x4, T = 7.4, γ = γ0 ≈ 0.9, T0 ≈ 6.63

of (6.29) computed independently. When μ = |T − T0| goes away from 0,
the central hump of the solutions narrows. Its amplitude increases whereas
the periodic tail becomes more visible. Figure 6.10 presents pulsating solitary
wave solutions of (6.3)–(6.4) for p = 2, corresponding to profiles of Fig. 6.9.
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Fig. 6.11. Localized solutions of (6.27) for V (x) = 1
2
(1 − e−x)2, γ = γ0 ≈ 0.9

((T0, γ0) ≈ (6.63, 0.9) ∈ Γ1) and different values of T . We represent w1(ξ) (the
shape of w2(ξ) is analoguous). From top to bottom we have T = 6.7, T = 7.15 and
T = 7.45. (the value of μ = T − T0 increases from top to bottom)
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The solution is represented as a function of n, for t = 0 (note the phase
variation between nearest neighbors in the case when V is hard).

In order to illustrate the case when V is not even, we consider now the
Morse potential V (x) = 1

2 (1 − e−x)2 and solve system (6.27). We consider
the point (T0, γ0) ≈ (6.63, 0.9) on Γ1, fix γ = γ0 and vary μ = T − T0.
Figure 6.11 provides the component w1(ξ) of solutions for different values of
T (the functions w1 and −w2 are different but have rather similar profiles).

For some potentials and parameter values γ, T , we find pulsating solitary
waves for which an oscillating tail is not visible, at least at the scale of the
central pulse. This is the case e.g. in Fig. 6.11 (middle) for the Morse potential
with T = 7.15 and γ ≈ 0.9, and in Fig. 6.1 for V (x) = 1 − cos(x) and
T = 8.1, γ ≈ 0.9. In the second case, however, a zoom on the solution tail
reveals oscillations approximately 1000 times smaller than the central pulse
amplitude.

References

1. E. Fermi, J. Pasta and S. Ulam, Technical Report LA-1940, Los Alamos National
Laboratory (1955).

2. N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965). 208
3. C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Phys. Rev. Lett.

19, 1095 (1967). 208
4. C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Commun. Pure

Appl. Math 27, 97 (1974). 208
5. L.A. Kalyakin, Russian Math. Surveys 44(1), 3 (1989). 208
6. G. Schneider and C.E. Wayne, in B. Fiedler, K. Gröger and J. Sprekels, eds,
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7.1 Introduction

In his last work, Fermi [18], in collaboration with Pasta andUlam, studied a
linear chain of equal masses connected with nonlinear springs (see Sect. 7.2.1
for details), performing one of the first numerical works ever made. Quoting
from the original paper: “The ergodic behaviour of such systems was studied
with the primary aim of establishing, experimentally, the rate of approach to
equipartition of energy among the various degrees of freedom of the system.”

They were interested in looking how long does it take for the following
limit to be actually reached:

Ej =
1
T

∫ T

0

Ej(t)dt −→
E

N

where Ej is the harmonic energy of the normal modes (see (7.3) in Sect. 7.2.1)
and E is the total energy, starting with an initial condition such that, for
example, E1 = E.

Surprisingly, in their experiments they could not see equipartition at all.
Quoting again from their original words: “Let us say here that the results of
our computations show features which were, from the beginning, surprising
to us. Instead of a gradual, continuous flow of energy from the first mode to
higher modes, all of the problems show an entirely different behaviour. (. . .)
Instead of a gradual increase of all the higher modes, the energy is exchanged,
essentially, among only a certain few. It is, therefore, very hard to observe
the rate of ‘thermalization’ or mixing in our problem, and this was the initial
purpose of the calculation.”

Their paper has been a milestone in the history of dynamical systems, and
constituted the beginning of a long challenge still open nowadays.

In fact their numerical experiments gave origin to a considerable amount of
work, both from the analytical point of view and from the numerical one. We

S. Paleari and T. Penati: Numerical Methods and Results in the FPU Problem, Lect. Notes

Phys. 728, 239–282 (2008)

DOI 10.1007/978-3-540-72995-2 7 c© Springer-Verlag Berlin Heidelberg 2008



240 S. Paleari and T. Penati

have to say that, in our opinion, despite many important advances, the prob-
lem deserves further work. For sure it is now clear what kind of phenomena
were underlying the results of the actual calculations performed by Fermi and
his coworkers, but their original question has not received a complete answer
yet: We still miss a satisfactory picture of the dynamics when the number N
of degrees of freedom goes to infinity with finite specific energy, i.e., in the
thermodynamic limit.

And since this is indeed a particularly difficult issue from the viewpoint of
rigorous results, the numerical investigations, started with the work of Fermi,
Pasta and Ulam, have also the fundamental role of inspiring the directions
one should pursue with the analytical techniques.

In this chapter we concentrate our attention on the point of view of the
numerical investigation of the dynamics of the FPU chain: it is indeed true
that the FPU model has represented a formidable source of problems in that
field, and many numerical methods, techniques, indicators has been used and
tested with it.

We will thus take some care about the implementation, reliability and
concrete use of some numerical tools; in particular we will consider the problem
of the numerical integration of the equations of motion, which is the basic
step for every investigation, and then we will analyse the use of Lyapunov
exponents, spectral entropies, Poincaré sections and other suitably developed
indicators, showing the results one can derive from them.

The picture emerging from the analysis of the simulations supports the
idea of a meta-stability scenario, according to which, when the specific energy
tends to zero, the phase space undergoes a sort of phase transition from a
“liquid” phase to a “solid” one: several regions appear where the orbits remain
trapped for very long times, and the diffusion process possibly leading to an
ergodic behaviour becomes extremely slow.

7.2 The Fermi-Pasta-Ulam Problem

7.2.1 The Model

We consider a chain of N particles with nearest neighbour interaction given
by a potential V . The Hamiltonian of such a system is given by

H(x, y) =
N∑

j=0

[
1
2
y2
j + V

(
xj+1 − xj

)]
, (7.1)

where x1, . . . , xN are the displacements of the particles with respect to the
equilibrium positions, and y1, . . . , yN are the corresponding momenta; it is
possible to impose periodic or fixed boundary conditions, and we will always
consider the latter case, i.e., x0 = xN+1 = 0.
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In this quite general context, the FPU α, β-model is given by the following
choice of the potential:

V (s) =
s2

2
+ α

s3

3
+ β

s4

4
; (7.2)

as usual we will indicate as the α-model the case β = 0, and as the β-model
the case α = 0.

As it is well known it is possible to introduce the normal modes by

xj =

√
2

N + 1

N∑

k=1

qk sin
jkπ

N + 1
, yj =

√
2

N + 1

N∑

k=1

pk sin
jkπ

N + 1
,

(qk, pk) being the new coordinates and momenta. The quadratic part of the
Hamiltonian in the normal coordinates is given the form

H2 =
N∑

j=1

Ej , Ej =
1
2
(
p2
j + ω2

j q
2
j

)
, (7.3)

where Ej is the harmonic energies and ωj the harmonic frequencies

ωj = 2 sin
(

jπ

2(N + 1)

)
.

7.2.2 The First Experiments and Conjectures

In Fig. 7.1 we reproduce a simulation similar to those obtained by Fermi and
collaborators. In a α, β chain of 31 particles, with the energy initially placed
on the first harmonic mode, it is possible to see a sort of recurrent dynamic: at
the end of the simulation shown, after a temporary exchange of energy with
some nearby modes, the initial situation is almost completely recovered, with
a kind of memory effect. Further investigation has shown that the sharing of
energy, if it happens, takes a very long time that, at low energies, becomes
unobservable even with the most powerful computers.

Before this experimental discovery, the general expectation about these
phenomena was quite different, since the common belief was that a simple
nonlinear perturbation of an integrable system is enough to destroy its struc-
ture and lead to ergodicity, and thus making sense to the application of Sta-
tistical Mechanics. In the attempt of understanding the mechanisms leading
to these phenomena, also in order to check their possible persistence in the
thermodynamic limit, different conjectures have been proposed.

Izrailev and Chirikov [32] suggested, in view of the KAM theory that ap-
peared in those years, the existence of an energy threshold, below which the
dynamics exhibits a recurrent behaviour due to the persistence of most of the
tori of underlying integrable structure. The choice of the initial conditions in
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Fig. 7.1. FPU chain (parameters shown in the figure) with condition close to those
used in the original experiments by Fermi, Pasta and Ulam. Left panel: time evolution
of the harmonic energy of the first eight normal modes. It is possible to see a sort of
quasi-periodic motion, with energy almost completely regained by the first mode at
the end of the simulation. Right panel: initial conditions (empty circles) showing all
energy given at time zero to the first mode, and averages over the whole simulation
(full circles) showing the spread of energy limited to a few low-frequency modes.
Time in natural units of the fastest oscillator (from [37])

the original experiments was simply unfortunate, since, according to them,
above the threshold the system should be ergodic, with a rapid sharing of
energy towards equipartition. Moreover, due to the mechanism of the reso-
nance overlapping, when the number N of particles grows very large, such
a threshold should vanish (as indeed happens for the available estimates of
KAM theory), thus making the FPU phenomena non-relevant in the thermo-
dynamic limit.

It is interesting to remark that the applicability of the KAM theory has
been proved only recently by Rink [40], although he does not discuss the
dependence of the threshold on N .

A different conjecture was proposed by Bocchieri et al. [9]. According to
these authors the existence of a specific energy (ε = E/N) threshold is the
relevant fact: such a threshold should remain positive in the thermodynamic
limit, giving important consequences about the foundations of Statistical Me-
chanics (see, e.g., [11, 13, 25, 26]).

This last approach could be recast, in a weakened form, in the framework of
Nekhoroshev exponential stability, stating that, for very low specific energies,
equipartition might be reached, but only in times that increase as exp(ε−a),
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with some positive a, i.e. times which could become longer than the lifetime
of physical system under analysis (see, e.g., [23, 24]).

7.2.3 The Meta-stability Scenario

As a further evolution of the original conjecture by Bocchieri et al. in the
spirit of a suitable weak Nekhoroshev framework, the picture emerging from
the more recent numerical results, is clearly characterized by the presence of
two well distinct time scales in the FPU dynamics.

We will show with several experiments that, for specific energy small
enough, a rather large class of initial data gives rise to a relatively rapid
creation of what we call “natural packets”, i.e. a cluster of, not necessarily
consecutive, modes which share the most of the energy. The dynamics within
the packet may well be chaotic, but it happens that it hardly exchanges energy
with the rest of the chain. In fact we also show experimental evidence that
these dynamical structures survive for exponentially long times, thus giving
the second timescale. Only after these longer times one can observe a proper
equipartition regime.

We stress that all these timescales appear to be with respect to the inverse
of the specific energy, and that we also have some evidence of a possible
persistence of these phenomena at the thermodynamic limit.

7.2.4 Further Comments

We conclude this section with some remarks of different nature.
To start with, it is worthwhile to stress that the main point of the FPU

question brings intrinsically a great difficulty from the numerical point of view.
In fact one has to deal with different infinite limits: ergodic properties and
the equipartition condition are defined by time averages over the whole orbit,
and the thermodynamic limit requires a very large number of particles to be
reasonably estimated. These points are clearly critical in actual computations,
and make several aspects of the investigation very hard and delicate at the
same time.

Another comment is the following. The natural way to deal with these
problems is the perturbative one. And the first choice among the integrable
systems the FPU is close to is that of the uncoupled linear oscillators; this
leads any numerical and analytical approach to the problem to be strongly
based on the normal modes decomposition. Indeed the FPU question itself
concerning equipartition is formulated in terms of harmonic energies. But
there are other, in these cases nonlinear, integrable systems in a neighbour-
hood of the FPU model: the Toda chain, for example, or one could consider
a resonant Birkhoff normal form of the FPU. We exploited this fact in some
experiment, although in a non systematic way; we think that this point should
deserve more attention.
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As a last remark we mention that most of the studies performed up to now
concerning the FPU problem were concentrated on the original one dimen-
sional case. The natural further step is to consider two- or three-dimensional
lattices in order to investigate the role of the dimensionality and to obtain
more relevant models for Statistical Mechanics. Some preliminary explorations
(see, e.g., [2]) on different types of two-dimensional lattices have been recently
performed, but it is still not clear whether the FPU phenomena persists; we
will not investigate this point.

7.3 Numerical Integration of Hamiltonian Systems

We begin our analysis of the numerical methods applied in the FPU problem
with the first and fundamental one: the numerical integration of the equations
of motion and its reliability.

The point is particularly relevant since we are dealing with a peculiar
class of systems, the Hamiltonian ones, and since we are naturally lead, by
the fundamental questions around the FPU problem, to follow the orbits for
very long times.

We will thus introduce in this section the symplectic integrators, which
are considered the most suitable ones for these purposes, and discuss their
properties. Many parts of this section are widely and freely inspired by some
unpublished lecture notes by Prof. Benettin and a book by Hairer et al. [31].

7.3.1 A Simple Symplectic Algorithm

To begin with, let us consider the following class of Hamiltonian functions

H(q, p) = T (p) + V (q) , (7.4)

given by the sum of a first term depending only on the momenta and a second
one depending only on the coordinates. If we take the usual kinetic term
T (p) = 1

2p
2, the equations of motion arising from 7.4 are q̈ = −V ′(q) =: f(q),

or as an Hamiltonian system
{
q̇ = p
ṗ = f(q) . (7.5)

In the comments that follow, for the sake of simplicity, we will consider only
one degree of freedom systems.

Leap-Frog Algorithm

We illustrate here a very classical and simple numerical integrator, introduced
for the first time, up to our knowledge, by Verlet [44]. In order to derive it one



7 Numerical Methods and Results in the FPU Problem 245

simply develops the solution q(t) of the previous equations of motion around
t in the points t± τ , and using 7.5 one gets:

q(t+ τ) = q(t) + τp(t) +
τ2

2
f(q(t)) +

τ3

6
f ′(q(t))p(t) + O(τ4) ,

q(t− τ) = q(t)− τp(t) +
τ2

2
f(q(t))− τ3

6
f ′(q(t))p(t) + O(τ4) ;

adding these two equations, and introducing Δq(t) := q(t) − q(t− τ), we get

Δq(t+ τ) = Δq(t) + τ2f(q(t)) + O(τ4) , (7.6)

p(t) =
1
τ

Δq(t) +
τ

2
f(q(t)) + O(τ2) . (7.7)

Leap-Frog Step

Once the time has been discretized with step τ , and with the obvious notation
qn = q(t0 + nτ), the algorithm is given by the following relations:

⎧
⎨

⎩

Δqn+1 = Δqn + τ2f(qn)
qn+1 = Δqn+1 + qn
pn+1 = 1

τΔqn+1 + τ
2f(qn+1)

. (7.8)

The first remark is that it is necessary to start up the algorithm, giving
an initial value for Δq by means of (7.7)

Δq0 = τp0 −
τ2

2
f(q0) .

It is then worthwhile to remark that the first two relations of (7.8) concern
only the configurations and can be carried on over the integration indepen-
dently of the third one. It is thus possible to avoid the computation of the
velocities, unless it is necessary for other reasons than the integration.

Symplecticity of the Algorithm

The leap-frog algorithm can be written as a map

Ψτ :
{
qn+1 = qn + τpn + τ2

2 f(qn)
pn+1 = pn + τ

2 [f(qn) + f(qn+1)]
, (7.9)

which turns out to be symplectic, i.e. the leap-frog is a symplectic integrator;
we will see the great importance of this property in Sect. 7.3.3. The proof of
this fact is obtained showing, by easy calculations, that the symplectic 2-form
ω = dq ∧ dp is preserved under the action of Ψτ

dqn+1 ∧ dpn+1 = dΨ1(qn, pn) ∧ dΨ2(qn, pn) = dqn ∧ dpn .
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Local Error Estimate

In order to estimate the local error produced at every step, one can simply
compare the map (7.9) with a Taylor expansion at time τ of the Hamilto-
nian flow

ΦτH :

{
qn+1 = qn + τpn + τ2

2 f(qn) + O(τ3)
pn+1 = pn + τf(qn) + τ2

2 f
′(qn)pn + O(τ3)

;

we thus get
‖ΦτH(qn, pn)−Ψ(qn, pn)‖ ≤ O(τ3) ,

and according to Definition 7.1 of Sect. 7.3.2, Ψτ turn out to represent an
algorithm of order 2.

7.3.2 Symplectic Algorithms of Splitting Type

We will consider now a special class of symplectic algorithms, the splitting
ones; and we will show how to build, starting from a symplectic-symmetric
map, a new map which has a greater accuracy than the original one.

Let us start with some definitions (see, e.g. [31]):

Definition 7.1. Consider a flow Φτ (x) of a differential equation, and an in-
tegration algorithm represented by the map Ψτ (x); we say that Ψτ is of order
k if there exists a function Δ(x) such that

Ψτ (x) = Φτ (x) + τk+1Δ(x) + O(τk+2) . (7.10)

The map Ψ∗
τ := (Ψ−τ )−1 is called adjoint map of Ψτ .

The following proposition gives the relation between Ψ∗
τ and the previous

quantities Φτ (x),Δ(x):

Proposition 7.1. If Ψτ is of order k, then

Ψ∗
τ (x) = Φτ (x) + (−1)kτk+1Δ(x) + O(τk+2) . (7.11)

Now we introduce the following

Definition 7.2. An algorithm is called symmetric if Ψ∗
τ = Ψτ .

The nice property of such algorithms is that their order is forced to be even;
indeed, using (7.10) and (7.11) it follows

0 = Ψτ (x)−Ψ∗
τ (x) = Δ(x)τk+1 [1− (−1)k] + O(τk+2) ;

so that k = 2m.
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A Splitting Algorithm of Order 2

Consider again a Hamiltonian of the form (7.4), i.e. the sum of two terms
one of which depending only on the coordinates, and the other one only on
momenta. This is a particular and simple case of a system whose vector field
can be splitted into two parts explicitly integrable. Denoting by ΦT and ΦV
the flows of the two separated parts, consider the following map:

Ψτ (x) =
(
Φτ/2T ◦ΦτV ◦Φτ/2T

)
(x) .

Considering for simplicity the one degree of freedom case, with the usual
kinetic term T (p) = (1/2)p2, we can easily write the action of the map Ψτ ,
with the same notation of the previous section, as

Ψτ :

{
qn+1 = qn + τpn + τ2

2 f(qn+ 1
2
)

pn+1 = pn + τf(qn+ 1
2
)

. (7.12)

This algorithm is easily seen to be symplectic, since it is obtained by
means of Hamiltonian flows, and symmetric, since it is given by a symmetric
composition of flows. It is a simple example of a splitting algorithm, and it
turns out to be of order 2; indeed it is very similar to the classical leap-frog,
which actually turns out to be Φ

τ
2
V ◦ ΦτT ◦ Φ

τ
2
V .

Higher Order Splitting Algorithms

Now we will show how, starting from a low-order symplectic-symmetric al-
gorithm, we can build up a higher order one, which still turns out to be
symplectic and symmetric.

Proposition 7.2. Let Ψτ be an algorithm of order k for the flow Φ, and
α1, α2 two real numbers such that α1+α2 = 1; then the map ψτ = Ψα1τ ◦Ψα2τ

satisfies

ψτ (x) = Φτ (x) + (αk+1
1 + αk+1

2 )τk+1Δ(x) + O(τk+2) .

This result is true also with more than two maps, for example:

ψτ (x) = (Ψα1τ ◦Ψα2τ ◦Ψα3τ ) (x) , (7.13)

where α1 + α2 + α3 = 1; we notice that, if and only if k = 2m, we can choose
the three real numbers such that αk+1

1 + αk+1
2 + αk+1

3 = 0. Thus ψτ has at
least order k + 1. In particular, if Ψτ is symmetric and α1 = α3, then ψτ is
an even-order symmetric map again, so its order is at least k + 2.

As a simple example one could take the map Ψτ given by (7.12); since
it is of order 2, the conditions on αi imply α1 = α3 = 1/(2 − 21/3) and
α2 = −21/3/(2 − 21/3). With these choices, the map ψτ in (7.13) is a fourth
order symplectic algorithm.
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7.3.3 A Theorem by Benettin and Giorgilli

The integration algorithms described in the previous sections are quite simple
(the leap-frog in particular) and efficient, with an accuracy which is always
satisfactory, or even very good for the higher order versions. But the reason
why they are so popular is much deeper, and it can be found, for example, in
a result by Benettin–Giorgilli [6] (but see also [3, 30, 31]).

In fact, given a symplectic map, they prove the existence of an interpo-
lating Hamiltonian, i.e. whose time one flow is close, in a suitable sense, to
the given map. The relevance of this result for numerical integration is the
following: if the given symplectic map is indeed a symplectic algorithm for a
Hamiltonian H , then using such a map, one is following almost exactly the
flow of the interpolating Hamiltonian, which in turn is close to H . As a further
remark one has to say that the idea of looking for the interpolating Hamilto-
nian fits into the general procedure of the backward error analysis (see [31])
usually performed in numerical analysis.

To be more definite, consider a Hamiltonian function H , denote its flow
at time τ as ΦτH and take a symplectic integrator Ψτ of order s, i.e. such that

‖Ψτ − ΦτH‖ = O(τs+1) . (7.14)

The question is whether there exist a different Hamiltonian Kτ whose flow is
exactly given by Ψτ .

Since τ , representing the time step of the integration, is usually quite
small, all the maps involved are close to the identity. The idea is then to
develop them in powers of τ , and to impose the relation Ψτ = ΦτKτ

at every
order in τ , solving the system iteratively. In this procedure there are of course
convergence problems, but one might hope in an asymptotic behaviour, so as
to optimize the order of truncation and perhaps obtain a small remainder, in
the spirit of Nekhoroshev estimates. And this is exactly what is possible to
prove:

Theorem 7.1 (Benettin–Giorgilli [6]). There exists τ∗, depending on the
constants of analyticity of Ψτ , and Kτ such that ∀τ ≤ τ∗, one has

‖Ψτ − ΦτKτ
‖ = O

(
τe−τ

∗/τ
)
. (7.15)

From the numerical point of view, the previous statement tells us that, if the
step is small enough, the approximation error is smaller than the roundoff
error.

Moreover, using (7.14) and (7.15) one gets

‖ΦτKτ
− ΦτH‖ = O(τs+1) ,

from which it is possible to deduce

Kτ = H + τsK ′ ; (7.16)
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the last relation clearly illustrates the main characteristic of symplectic
integrators: they conserve almost exactly the energy of a Hamiltonian which
is τs close to the one we are numerically integrating.

A Simple Example

In order to give an idea of the actual effect of a symplectic integrator, we
consider a simple concrete case, and we try to give at least the leading term
of K ′ in (7.16). We consider for simplicity the splitting algorithm of order two
introduced before [see formula 7.12] and we expand it with respect to powers
of τ

Ψτ = ψ0 + τψ1 + τ2ψ2 + τ3ψ3 + · · · ,
where ψ0 is obviously the identity, and the first following terms are

ψ1(q, p) = (p, f(q)) ,

ψ2(q, p) =
1
2

(f(q), pf ′(q)) ,

ψ3(q, p) =
1
2

(
pf ′(q),

1
2
p2f ′′(q)

)
.

We will follow the initial steps of the algorithm described in [6] to compute
the first correcting term, call it k3, of the modified Hamiltonian Kτ . Working
on the corresponding field Fτ , the easiest terms, in a power expansion in τ ,
are f1 and f2: in fact

f1 = ψ1 , f2 = ψ2 −
1
2
Lψ1ψ1 ,

where LG denotes the Lie derivative along G.
One can easily verify that f2 = 0, as expected from the statement of the

main theorem; thus, up to constants, k2 = 0. Concerning the subsequent term

f3 = ψ3 −
1
12
Lψ1ψ2 ,

we perform Lie derivatives

(Lψ1ψ2) (q, p) = (Lψ1f(q), Lψ1pf
′(q)) = (pf ′(q), p2f ′′(q) + f(q)f ′(q)) ,

and then, adding ψ3, we get

f3 =
(

1
12
pf ′(q),− 1

24
p2f ′′(q)− 1

6
f(q)f ′(q)

)
,

whose Hamiltonian is

k3 =
1
24
p2f ′(q) +

1
12
f2(q) .

The interpolating Hamilton function thus becomes

Kτ = K + τ2k3 + O(τ3) .
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7.3.4 Stability of the Algorithm

Up to now we checked the conservation of energy during the numerical integra-
tion of our systems. To conclude our brief analysis of symplectic algorithms,
we comment on the effect they may have on other aspects of the dynamics.
In particular, considering a system with an elliptic equilibrium point at the
origin, we concentrate on the persistence of its nature, and on the effects on
its normal modes frequencies.

For this purpose we recall that we ended last paragraph with the com-
putation of the first correcting term τ2k3 of the modified Hamiltonian Kτ in
the case of the integrator given by the map (7.12). We want to stress that
this term, as the others kj , may be quadratic in the set of variables (q, p),
thus modifying the quadratic part of K and the spectrum of frequencies of
the small oscillations. To go on with the analysis we must specify the original
Hamiltonian H we are studying: in order to have an elliptic equilibrium point
at the origin we consider a set of oscillators. In a general nonlinear case it may
be not an easy task to study the new frequencies, modified by the integrator,
via the usual diagonalization of the quadratic part of the Hamiltonian. We
thus further restrict to the simplest example, i.e. that of uncoupled oscilla-
tors. In this case the action of the algorithm in normal coordinates may be
represented by the following block matrix

Ψτ (q, p) =

(
Id− τ2

2 Ω2 τId− τ3

4 Ω2

−τΩ2 Id− τ2

2 Ω2

)
·
(
q

p

)
,

where Ω2 is the diagonal matrix of the ω2
j . Reordering rows and columns with

respect to the oscillator’s coordinates (q1, p1, . . . , qn, pn) one gets the matrix
in block diagonal form, with blocks Aj

Aj :=

(
1− τ2

2 ω
2
j τ − τ3

4 ω
2
j

−τω2
j 1− τ2

2 ω
2
j

)
.

The stability of Aj is related to the signum of τ2ω2
j −4: if |τωj | ≥ 2 the corre-

sponding dynamic becomes hyperbolic. The minimal requirement to preserve
the qualitative behaviour of the system is to ask for τ maxj=1...,n{ωj} < 2.

The next point we try to investigate, once we are sure that we maintain
the nature of the equilibrium, is how the resonance relations are affected by
the integrator. A complete analysis of these facts is beyond the scope of this
paper, so we will limit ourselves to some considerations. Owing to the analogy
between Aj and the exponential map eΩ2τ , we first define the rotation angles
and the new frequencies

θj := arc cos
(

1− 1
2
τ2ω2

j

)
, (7.17)

ω̃j :=
1
τ
θj ; (7.18)
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remark that, due to the restriction τ maxj=1...,n{ωj} < 2, the definition of θj
makes sense.

If τωj � 1, then we easily get convinced that the angles θj are very close to
the original values τωj and the old frequencies are a first order approximation
of the new ones; indeed, from a Taylor expansion around zero, we have

θj = τωj +
1
6
τ3ω3

j + h.o.t. , (7.19)

ω̃j = ωj +
1
6
τ2ω3

j + h.o.t. . (7.20)

We consider now the low part of the FPU spectrum, since in many numer-
ical experiments initial data are taken with all the energy in one or few low
modes. It is worthwhile to remark that, for large N the low frequencies are
almost resonant, being approximately integer multiples of the lowest one, as
one can see by the following development

ωj ∼ j
π

N + 1
− 1

24

[
jπ

N + 1

]3

1 ≤ j � N . (7.21)

These Taylor expansion shows the existence of almost resonances |jω1 −
ωj | = O(j3/N3), which may appear as small denominators in a suitable per-
turbation approach; the new frequencies ω̃j still satisfy the same property

|jω̃1 − ω̃j | =
j(j2 − 1)

6

(
π

N + 1

)3(1
4
− τ2

)
+ h.o.t. = O

(
j3

N3

)
,

due to the smallness of τ2 � 1/4.
As a final comment we could say that in dealing with numerical inte-

gration one has to be always very careful. The use of higher order symplec-
tic integrators strongly improves the conservation of energy, and the natural
consequence could be the choice of a larger integration step to decrease the
computational times maintaining a reasonable accuracy. But, as we showed
in this section, this operation might be dangerous, since it may change other
important features of the system, for example producing relevant deformation
of the spectrum that affect the resonance relations.

7.4 Natural Packets and Time Scales

In the spirit of the original paper, as we discussed in Sect. 7.2, the main point
in the FPU problem is to estimate the rate of the relaxation to equipartition.
From the point of view of numerical investigation, once one is confident with
the simulations performed, as we discussed in Sect. 7.3, the issue is how to
extract the useful informations, i.e. to find a reliable set of indicators which
are able to detect the approach towards equipartition in a qualitative and/or
quantitative way.
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In this section we consider a sort of indicator, recently introduced by
Giorgilli and collaborators in [7], and then further generalized in [38], by
means of which one clearly recognizes the existence of two timescales and the
meta-stability of clusters of normal modes in the FPU dynamics.

7.4.1 Ordered Modes Clusters

To introduce the main idea, the first remark is the following. If one aims at
seeing the slower and slower rate of approach to equilibrium as the energy,
or specific energy, goes to zero, one should be able to detect a non-complete
sharing of the energy among the normal modes. In different words, it should
be possible, for example, to consider a population of modes which does not
exchange energy with the other ones. A first attempt of this kind has been
done in [24], where a model with alternating masses was considered: it has
been possible to show that the normal modes are split into two populations of
acoustic and optical modes, with an extremely slow sharing of energy between
the two sets. In the original FPU model it has never been possible to prescribe
an analogous subdivision: the point enlightened in [7] is that such a task is
actually performed by the dynamics itself according to the initial conditions
considered, producing a sort of “natural” splitting, which depends on the
region of the phase space considered.

This can be seen as follows. A naive, but quite effective, way to check
the degree of equipartition reached by the system is to look directly at the
distribution of energy among the modes, like in the right panel of Fig. 7.1, as
time grows. For sufficiently low energy one clearly observes that the energy,
initially given only to the first mode, spreads quite rapidly to a few low fre-
quency modes, involving in sequence the first two modes, then the first three
ones, then the first four ones, and so on until this process stops. Thus, ac-
cording to a first timescale, the dynamic creates a “natural packet” of modes,
and the system enters in a kind of meta-stable state, characterized by an ex-
tremely slow flow of energy towards the higher modes, until equipartition is
possibly reached on a second and much longer time scale.

In order to put into evidence this phenomenon, and to give quantitative
estimates one proceeds as follows: the natural quantities to consider are the
time evolutions of packets of modes instead of that of the single modes. One
thus introduces

Es(t) :=
s∑

j=1

Ēj(t) , (7.22)

where Ēj(t) := 1
t

∫ t
0
Ej(s)ds and Ej is defined in formula (7.3); giving ini-

tially all the energy to the first mode, every packet has at the beginning the
whole energy, i.e., Es(0) = E for every s. To estimate the evolution towards
equipartition of the system, the notion of a critical time ts is introduced. It
is defined as the first time at which the sth packet has lost a fixed fraction γ
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Fig. 7.2. Natural packet phenomenon. β-model, with β = 1/10, N = 255; the
threshold γ is fixed to 0.1. Abscissa: critical time ts for every packet (see footnote 1);
ordinate: specific energy. Left panel: initial energy on mode 1. Right panel: initial
energy equally distributed on a packet of modes from 4 to 20 (from [38])

of the energy Δs it has to lose to reach equipartition. In more precise terms,
since at equipartition, say when t→∞, Es(∞) = sEN , one has

ts := min
{
t :

Es(t)
EN (t)

=
Es(0)− γΔs

EN (t)
= 1−

(
1− s

N

)
γ

}
(7.23)

For every s, and for every choice of the threshold γ, an “existence” time
for the s-th packet is thus defined. Fig. 7.2 shows the critical times of the
various packets1 plotted against the fixed values of the specific energy. The
two different timescales we previously introduced are clearly recognizable.
The collection of points clustered in a straight line, i.e. giving a power-law
dependence of the time with respect to the specific energy, represents the
relatively rapid formation of the natural packet ; the other points form a sort
of second branch which behaves according to a longer timescale and which
represents the destruction of the natural packet and the sharing of energy
among all the modes up to the reaching of equipartition. The left panel refers
to the initial energy being given to the first mode, while the right one refers
to the case of initial energy equally distributed on a packet of low-frequency
modes. Despite some differences in the actual positions of the points in the
graphs, the qualitative structure with the two timescales is common to the
two different initial conditions. We may also remark that for the lowest values
of the energy there are no points on plot: this means that the natural packet is

1 In order to avoid overcrowded pictures, here as well as in Figs. 7.4 and 7.5, for
most of the packets only a single point is plotted. Symbols are used for packets
1, 3, 7, 15, . . . , N+1

4
−1 and for other 4 packets with index between N+1

4
−1 and N .
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composed only by the modes initially excited, i.e. the dynamic appears to be
highly frozen; in particular, for the left panel it means that the first mode does
not lose more than 10% of the energy it has to lose to reach equipartition, up to
the time of the calculation, 108. We further stress that the qualitative aspects
of this phenomenon are clearly present in all our experiments, independent of
the choice of the threshold γ, number of particle N , or model (α, β model, α
model or β model).

In [7] a careful analysis of the packet formation has been performed, for
example revealing that the natural packet, in the case of initial energy on the
single first mode, extends up to a certain frequency which scale with specific
energy as ω ∼ ε1/4, with a dependence on N only through ε = E

N in the range
7–1 023 (see [7], Fig. 7.7).

For what concerns the second branch, these pictures strongly suggest a
timescale longer than as a power law with the inverse of specific energy. It can
be stated that the time represented by the second branch should be a lower
bound for the equipartition time. A precise estimate is illustrated in Sect. 7.5
by means of the spectral entropy indicator, with a numerical evidence of an
exponential scaling.

7.4.2 Reordered Modes Clusters

We should remark that the previous definition (7.22) of packets is strictly
related with the peculiar evolution one observes as the energy is initially given
to the first (few) mode(s): actually a spread, which is not merely a transfer,
to the successive modes.

It happens that, when the energy is initially placed in a different part of
the spectrum, its sharing is no more directed towards neighbouring modes in
a prescribed direction. For example it is not true that starting with the last
mode excited, the flow of energy has a symmetric behaviour with respect to
the previous case. Indeed, as it is shown in the right panel of Fig. 7.3 for
the α, β chain with N = 511 and initial energy on the mode 383, the first
sharing of energy happens within small clusters of modes in several parts of
the spectrum. Many other combinations are possible with different choices of
initially excited modes, and the produced phenomena are very rich.

In order to obtain pictures like those shown in Sect. 7.4.1, one clearly has to
change some definitions. The idea is then not to impose a prescribed ordering,
but to leave also such a task to the dynamic itself. At every time, the s-th
packet is composed by the smost energetic modes. With such a rearrangement
it is possible to produce again pictures like those of Fig. 7.2: the qualitative
aspects of the natural packet phenomenon seem to persist in many different
cases, with initial energy concentrated in one (or few consecutive) mode(s)
placed in different parts of the spectrum.
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Fig. 7.3. Time averaged distributions of harmonic energies, FPU α, β-model (α =
β = 1/4), up to time t = 106. Left panel: N = 255, ε = 0.01, energy initially given to
the first mode. Right panel: N = 511, ε = 0.003, energy initially given to mode 383.
In the left panel it is clear the structure of a packet of consecutive low-frequency
modes sharing most of the energy. In the right panel the energy is spread in several
clusters of modes placed in different parts of the spectrum, thus justifying the idea
of reordered packets

High-Frequency Initial Data

In Fig. 7.4 we show the results of these calculations for N = 127, with initial
energy in the mode 127, left panel, and in a packet of modes from 120 to 127,
right panel. We can see the two different branches, the one concerned with
the formation of a packet involving a certain number of modes, again with a
power law scaling with the specific energy, and the second one related to the
further sharing with all the modes. Thus it is natural, also for these types of
initial conditions, to perform some more precise estimates of the second time
scale, as we illustrate in Sect. 7.5.

Other Initial Data

Figure 7.5 shows again these phenomena with a different number of particles
(N = 511) and initial energy concentrated on mode 511, left panel, and on
mode 383, right panel. Despite some minor differences, like the actual time at
which we see the branching between the different time scales, the qualitative
aspects of the natural packet phenomena seem to persist.

Concerning the initial data, it is possible to say that the figure in the right
panel represents a sort of intermediate situation between those of Figs. 7.2
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Fig. 7.4. Natural packet phenomenon. α, β-model, with α = β = 1/4, N = 127; the
threshold γ is fixed to 0.1. Abscissa: critical time ts for every packet (see footnote 1);
ordinate: specific energy. Left panel: initial energy on mode 127. Right panel: initial
energy equally distributed on a packet of modes from 120 to 127 (from [38])

and 7.4. In the figure in the left panel it is possible to see a sort of inter-
mediate branch: one could think of a first meta-stable state, related to the
natural packet, followed by a second one which involves more modes, whose
destruction eventually leads to equipartition.

10210
–4

10
–3

10
–2

10
–1

10
0

10
1

104 106 10210
–4

10
–3

10
–2

10
–1

10
0

10
1

104 106

Fig. 7.5. Natural packet phenomenon. α, β-model, with α = β = 1/4, N = 511; the
threshold γ is fixed to 0.1. Abscissa: critical time ts for every packet (see footnote 1);
ordinate: specific energy. Left panel: initial energy on mode 511. Right panel: initial
energy on mode 383 (from [38])
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7.4.3 Discussion

Some remarks are in order. From the numerical point of view, an important
aspect is that the calculation of the relevant data do not constitute a great
computational overhead; indeed, like in the case of the spectral entropy (see
Sect. 7.5), besides the numerical integration of the orbits we are interested in,
one has to perform the usual Fourier transform (by means of FFT algorithm)
to get the normal modes and very few further computations. The situation
is quite different, for example from the case when one uses the Lyapunov
exponents (see Sect. 7.6).

The observation that the dynamics creates packets of modes is probably
already present in other previous papers (see, e.g., [15]), but up to our knowl-
edge it has never been revealed before in a so clear and effective way. It gives
both qualitative pictures and quantitative estimates of the dynamics, putting
into evidence the existence of different timescales, and the meta-stability of
the natural packets. Moreover the so obtained splitting of the system in slowly
interacting part is not a priori prescribed, but emerges naturally from the evo-
lution of the phase space region chosen for the initial conditions; the metasta-
bility could be explained, as we do in [27], in terms of resonant states: indeed
for low modes, the frequencies involved in the packet satisfy the almost reso-
nances considered in (7.21).

This indicator, initially conceived for initial conditions involving the lowest
part of the spectrum, appeared robust enough to be generalized to cover other
cases, with energy given to modes of different frequencies. This is particularly
relevant, since the existence of the natural packet phenomenon with different
classes of initial data confirms that these mechanisms are not restricted only to
particular regions of the phase space. We will stress again this point discussing
the results of Sect. 7.5.

A further comment, again related to the relevance of these phenomena
for Statistical Mechanics, comes from the indication that some quantitative
aspects of the natural packets as well as their existence and meta-stability
appear to be independent from N , suggesting their possible persistence in the
thermodynamic limit (concerning this point see also Sect. 7.5, and Fig. 7.6 in
particular).

As a final remark concerning the interplay between analytical and numer-
ical results, and the inspiring role of the latter, we should mention that, a
first rigorous result for the natural packet formation is now available [1]: the
statement says that, for an α-model with periodic boundary conditions, with
low-frequency initial excitation, for sufficiently large N and sufficiently small
ε, the dynamics remains close, for timesscaling as a suitable inverse power of
ε, to a suitable solution of a pair of Korteveg–deVries equations, which con-
stitute a resonant normal form of the system; in terms of normal modes, such
a solution appears as a natural packet.
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7.5 Spectral Entropy

In this section we will describe this now by classical indicator and some of the
results we obtained by means of it.

It has been used in many papers (see, e.g., [8, 17, 33, 34, 38, 43]), and
many conclusions have been drawn thanks to it, but we defer from other
contributions in this volume for more details on the literature.

7.5.1 The Numerical Indicator

This indicator too is based, like the one described in Sect. 7.4 and many others,
on the normal modes structure of the linear part of the system. From the point
of view of its numerical calculation, apart from the Fourier transform needed
by the normal modes conversion, it is absolutely not expensive.

The definition is the following:

S := −
N∑

j=1

ej ln ej ej :=
Ej∑
k Ek

,

where Ej are the usual harmonic energies defined in (7.3); the formulas justify
the name of spectral entropy for S, which is a quantity ranging from 0, when
all the harmonic energy is confined in a single oscillator, and lnN , in exact
equipartition. In order to have a normalized indicator, the following quantity
is introduced:

neff :=
eS

N
,

which varies in [1/N, 1] and can be interpreted as an effective fraction of modes
involved in the dynamic. It is possible to consider an analogous quantity, see,
for example, [43], defined as an effective fraction of oscillators involved in the
dynamic, but we will concentrate on neff .

S, and thus neff too, are defined on the phase space, and so it is natural
to evaluate them on the flow, to check the “level of equipartition” of the orbit
during its evolution. Starting with one or a few modes excited, it is possible
to see the indicator growing from its initial value close to zero to a saturating
value corresponding to equipartition, if the energy given is sufficiently high
and the time evolution computed sufficiently long.

In principle one could try to detect, in the time course of neff , the formation
and the meta-stability of the natural packets introduced and described in
Sect. 7.4: even though it is sometime possible a posteriori to recognize them,
it turns out that this indicator is too rough for this purpose. It is in fact not
reasonable for a single number, as spectral entropy is, to contain too many
detailed informations.

It is instead less ambiguous to consider the time at which it saturates, or
even better the time at which it overcomes a certain threshold c close to its
saturating value:
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te := min {t : neff(t) = c} (7.24)

Concerning this point one has to remark that the quantities Ej , and thus
also S and neff , fluctuate quite a lot, especially in a genuine equipartition
regime; it some averaging is thus useful, for example over time, or over different
orbits in the same class of initial conditions. If one performs a time average
of Ej before computing S, then neff will saturate at 1 at equipartition; any
kind of averages performed after the computation of S will results in a lower
saturating level.

Independently of the particular way one calculates it, the above defined
time te should be a reliable lower bound for the equipartition time, i.e. it could
be used to estimate the second time scale whose existence is put into evidence
in Sect. 7.4 by means of the natural packet phenomenon. And it is the “lower
bound” nature of te that makes it useful if one aims, as we do, at showing a
strong freezing of the dynamics when (specific) energy goes to zero.

7.5.2 Exponentially Long Times to Equipartition

As we said, there all a lot of papers (see, e.g., [7, 8, 15, 16, 34, 39], with-
out any claim of completeness) dealing with quantitative estimates for the
equipartition times, many of them using the spectral entropy indicator.

We recall only the papers [17, 43], where power law scalings with the
inverse of specific energy of the kind Teq ∼ ε−3 and Teq ∼ ε−2 are found
for the energy initially placed respectively in the low and high parts of the
spectrum; and we quote also [39], probably the first one to put into evidence
the possibility of exponentially long times.

Since the pictures of Sect. 7.4 suggest for the second time scale a stronger
than power law dependence with respect to 1/ε, it has been natural to further
investigate this point. In what follows we briefly describe the corresponding
results.

Low-Frequency Initial Data

In order to compare the results with those in [17], the FPU β-model has been
considered, with β = 0.1, initial data with energy equally distributed on a
packet of modes

[
N+1
64 , 5(N+1)

64

]
, i.e., with fixed frequency range. The specific

energy has been varied in the range [0.0089, 7.7] for N ∈ {255, 511, 1023}.
For every one of these conditions, 25 different orbits have been integrated,
changing randomly the phases of the oscillators: the indicator used is the
average over these different orbits, which saturates at values slightly less than
0.7. In order to see the scaling of the relaxation time with the specific energy,
we plotted, for every ε the time at which neff overcomes a fixed threshold,
that we choose equal to 0.5.

The results are illustrated in the left panel of Fig. 7.6. There is a nu-
merical evidence supporting the exponential scaling of relaxation times to
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Fig. 7.6. Exponentially long relaxation times and their thermodynamic limit. β-
model with β = 1/10. Left panel: time needed by neff to overcome the threshold
0.5 versus the specific energy power to −1/4, for fixed N = 255 and ε in the range
[0.0089, 7.7], in semi-log scale; the straight line is the best fit using all the points
with ε ≤ 1. Right panel: time needed by neff to overcome the threshold 0.5 versus
the number of particles N , for a couple of specific energies (0.0516 for triangles and
0.137 for circles) and N in the range [63, 32767]. After an initial transient, there is
clearly no dependence on N (from [8, 38])

equipartition with respect to specific energy, with a possible law of the type
T ∼ exp(ε−1/4). We notice that in our calculations we explore a slightly lower
specific energy range than in [17].

In the left panel of Fig. 7.6, results for N = 255 are shown; we remark
that the same exponential estimate has been obtained also for N = 511 and
N = 1023.

Thermodynamic Limit

For the case of low-frequency initial data, in order to check the persistence of
these phenomena in the thermodynamic limit, we repeated the same calcula-
tion as before varying N ∈ [63, 32 767] for a couple of fixed values of specific
energies ε ∈ {0.052, 0.14}.

In Fig. 7.6 one clearly sees that after an initial decrease of the times for
the first low values of N , the subsequent points reported in the plot relative
to values of N greater than 1 023 remains practically constant, thus showing
another numerical indication of the possible persistence in the thermodynamic
limit of the phenomena presented in [8].
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Fig. 7.7. Exponentially long times. α, β-model, with α = β = 1/4, N = 127. Plot of
time needed for neff to overcome 0.55 versus ε−1/5; specific energies are in the range
[0.0046, 10], and the straight lines are the best fit using all the point with ε ≤ 1. Left
panel: initial data on the mode 127. Right panel: initial energy in equipartition on
a packet of modes from 120 to 127. Every point is obtained by averaging over 10
orbits (from [38])

High-Frequency Initial Data

Also in the case of high-frequency initial data, as explored in [43], we per-
formed a computation similar to the one previously illustrated, for the α, β-
model. The only difference is in the number of different orbits used to average
neff , lowered to 10 to reduce the computational time. The results are shown
in Fig. 7.7. The fitting with an exponential law describes in a quite good way
the experimental data. With respect to the case of initial low-frequency exci-
tation, the scaling Teq ∼ exp(ε−1/5) has a different exponent for the specific
energy; we have no theoretical explanation for this particular number, but
such a difference might not be surprising. In fact, if one conjectures that a
resonance mechanism is actually responsible for the long-time freezing of the
dynamics, it is clear that different parts of the spectrum may be characterized
by different type of resonances.

7.5.3 Discussion

Concerning the indicator itself, we have to stress again that it is quite easy
and cheap to calculate. Moreover, it is constituted by a single number, which
is at the same time a strength and a weakness: In fact it may summarize in
a single quantity the level of equipartition of an orbit, and this fact is really
useful. But on the other side, for the same reason, one cannot expect that
it may contain a rich amount of informations. A kind of opposite situation,
say, happens for the critical times ts defined in formula (7.23) to describe
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the natural packets phenomenon: they are many numbers and they contain
more informations, and thus it requires some care in order to obtain a global
picture, as in the figures representing the two timescales and the meta-stability
of natural packets.

A different remark about the indicator concerns the way one calculates it;
as we noted after the definition of te in formula (7.24), a time average of the
harmonic energies before the computation of S clears out their fluctuations,
while a different way of calculation partially maintain these informations. And
it is in fact possible to show that if one computes S in the two ways, their
difference is related to the mean square deviation of the harmonic energies.
According to us this point should deserve more attention, because one should
wonder if equipartition is really the relevant condition for Statistical Mechan-
ics; in fact even a set of uncoupled oscillators may indeed be put in a condition
of equipartition. It is probably more relevant to investigate the fluctuations,
by means of the mean square deviations, or by means of some quantity related
to a normalized total variations of the harmonic energies. We are presently
trying to make some steps in this direction.

Another important point in the discussion of these results, in connection
with their relevance for Statistical Mechanics, is the following: it is often said
that, even if the “FPU behaviour” survives in the thermodynamic limit, the
fraction of the phase space associated with it is negligible, and that the choice
of the initial energy on a single mode, the first one, is not physical. Without
entering in the discussion of what is physically relevant or not, we could now
say that, in view of the results presented in this section, the exponentially
long times and the existence of meta-stable packets of modes are phenomena
not so isolated in particular and small regions of the phase space.

Concerning the comparisons with the results of [17] and of [43], we remark
that in both cases we explore a lower specific energy range. And indeed in
the latter paper the authors do not exclude, for very low energies, that the
equipartition times could increase more rapidly than as a power law.

7.6 Lyapunov Exponents

In this section we will be concerned with a class of numerical tools which
are based on the local behaviour around an orbit studied by means of the
corresponding variational equation. This idea is of course the natural gener-
alization of the linear stability analysis in a neighbourhood of an equilibrium
point; the same analysis is indeed well defined for a periodic orbit, which is
a stationary point of a suitable associated map, and the goal is to obtain a
kind of generalized eigenvalues and eigenvectors for every orbit.

Most of this section will be devoted to the so called Lyapunov Characteris-
tic Exponents (LCEs), their definition and properties, the algorithm one uses
to calculate them, and some results we obtained. Then some variants will be
considered and analysed.
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7.6.1 Maximal LCE

In order to introduce the (maximal) LCE, we recall that our aim is to study
the local behaviour around a trajectory, and to check a possible exponential
divergence of nearby orbits.

Consider a dynamical system, represented by its flow Φ, on a Riemannian
manifold M and denoted by d(·, ·) the metric and by ‖ · ‖ the norm on the
tangent space; given a point x0 ∈M on the orbit we are interested in, consider
a regular curve passing through x0

{
y : ( −ε, ε) ⊂ � →M
y(0) = x0

transversal to the flow by x0.
Every point y(s) on the curve y evolves through the flow of the system,

and may be seen as an initial data for a nearby orbit. We are thus interested
in the deformation, induced by the dynamic, of the distance of the two points
y(0) ≡ x0 and y(s), in the limit for s going to zero:

γ(t, x0, ξ0) := lim
s→0

d(Φt(y(s)),Φt(x0))
d(y(s), x0)

, (7.25)

where ξ0 := dy
ds (0). Taking the first-order approximation of both y(s) and

Φt(y(s)), we obtain

y(s) = x0 + sξ0 + h.o.t ,
Φt(y(s)) = Φt(x0) + s〈DxΦt(x0), ξ0〉+ h.o.t .

Let us now define
ξ(t, x0, ξ0) := 〈DxΦt(x0), ξ0〉 ;

actually it clearly turns out that ξ(t, x0, ξ0) is the solution of the variational
equation

ξ̇(t) = JxF
(
Φt(x0)

)
ξ(t) , ξ(0) = ξ0 ,

where the flow Φt(x0) is the solution of the Cauchy problem ẋ(t) = F (x(t)),
x(0) = x0.

Standard Definition

It is possible to rewrite the formula (7.25) as

γ(t, x0, ξ0) =
‖ξ(t)‖
‖ξ(0)‖ , (7.26)

dropping the dependence on the unchanged variables. Being γ(t, x0, ξ0) a mea-
sure of the expansion or compression of the tangent vector ξ0 after a time t,
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in the spirit of the linear analysis of a stationary point, we take its logarithm
to detect exponential behaviour, normalize with t to obtain an average coef-
ficient, and take the limit to consider the effect on the whole orbit: we thus
define the (maximal) LCE as

χ(x0, ξ0) := lim
t→∞

1
t

ln(γ(t, x0, ξ0)) . (7.27)

Alternative Definitions

It is possible to provide an integral definition of LCE: indeed using (7.26)
one has

ln(γ(t, x0, ξ0)) = ln ‖ξ(s)‖ − ln ‖ξ(0)‖ =
∫ t

0

d
ds

ln ‖ξ(s)‖ds ;

and the one computes the derivative of ln ‖ξ(s)‖

d
ds

ln(‖ξ(s)‖) =
1

‖ξ(s)‖〈ξ̇(s), ξ̂(s)〉 ,

where ξ̂(s) = ξ(s)/‖ξ(s)‖.
A further description of the LCE, which will be used for actual compu-

tations, comes out as follows. One can write the logarithm of γ (7.26) in
this form

ln γ(t, x0, ξ0) =
t∑

s=1

ln
(

‖ξ(s)‖
‖ξ(s− 1)‖

)
=

t∑

s=1

ln γ(1,Φs−1(x0), ξ(s− 1)) ;

in this way χ might be seen as a logarithmic average of the rate of expansion
in each time unit.

Summarizing we have the three equivalent definitions

χ = lim
t→∞

1
t

ln(γ(t, x0, ξ0)) , (7.28)

= lim
t→∞

1
t

∫ t

0

1
‖ξ(s)‖〈ξ̇(s), ξ̂(s)〉ds , (7.29)

= lim
t→∞

1
t

t∑

s=1

ln(γ(1,Φs−1(x0), ξ(s− 1))) . (7.30)

We recalled the integral definition since it is the starting point of another
indicator related to the LCE, the Mean Exponential Growth factor of Nearby
Orbits (MEGNO), discussed in [14]. This indicator is in fact given by Y (t) =
2
t

∫ t
0

s
‖ξ(s)‖ 〈ξ̇(s), ξ̂(s)〉ds and it proved to be useful in the investigation of both

the regular and chaotic part of the phase space. We will nevertheless enter in
the discussion of this indicator.
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7.6.2 Some Rigorous Results

In the previous section we have presented three different ways to introduce the
(maximal) LCE of a tangent vector ξ0 along an orbit Φt(x0), but we omitted
any discussion about the existence of these limits. Usually, in literature, one
overcomes the problem giving a weaker definition

χ = lim sup
t→∞

1
t

ln(γ(t, x0, ξ0)) .

Exploiting the common properties of lim sup one can prove the

Theorem 7.2. For each x ∈M , it holds

(1) the quantity χ(x, ξ0), ξ0 ∈ TxM, can assume at most m ≤ n different
values

χ1(x) > χ2(x) > · · · > χm(x) ;

(2) let Li = {ξ0 ∈ TxM : χ(x, ξ0) ≤ χi}, then

TxM = L1 ⊃ L2 ⊃ · · · ⊃ Lm

and
ξ0 ∈ Li \ Li+1 ⇒ χ(x, ξ0) = χi(x), i = 1, . . . ,m.

The idea of the proof is to show, firstly, that the sets

L(θ) = {ξ0 ∈ TxM : χ(x, ξ0) ≤ θ}

are vector subspaces of the tangent space TxM . Plainly, if θ′ < θ then L(θ′) ⊂
L(θ). If there exists ξ0 ∈ L(θ) such that χ(x, ξ0) = θ, then ξ0 �∈ L(θ′) and
dimL(θ) > dimL(θ′).

Looking at the statements of the theorem one realizes that a single LCE
χ(x, ξ0) is function of the whole one-dimensional subspace to which ξ0 belongs.
Thus, it is natural to generalize

Definition 7.3. Consider a p-dimensional subspace E ⊆ TxM and ξ1, . . . , ξp
a generic basis of it; if the limit

χ(p)(x,E) = lim
t→∞

1
t

ln
V olp(DxΦtξ1, . . . , DxΦtξp)

V olp(ξ1, . . . , ξp)
(7.31)

exists, it is called LCE of order p.

The setting we are dealing with suggests other definitions:

Definition 7.4. Let us take νi = dimLi − dimLi+1 independent vectors in
Li \ Li+1, i = 1, . . . ,m which form a basis e1, . . . , en in TxM , and g1, . . . , gn
any other basis of TxM. The first basis is called “normal” iff

n∑

i=1

χ(x, ei) ≤
n∑

i=1

χ(x, gi) .
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Definition 7.5. The quantity νi we have defined above is called “multiplicity”
of χi(x). The collection of all the LCEs, each repeated with its own multiplic-
ity, is called “spectrum.”

We are now ready to give a statement of one of the most classical and
relevant results concerning LCE:

Theorem 7.3 (Oseledec [36, 10]). Consider a dynamical system (M, μ,Φ):

(1) for almost all x ∈M there exists the “exact” LCE (7.27); the same holds
for (7.31);

(2) the spectrum
Sp(x) = {χ1, ν1, . . . , χm, νm}

is a measurable function of x;
(3) for each “normal” basis e1, . . . , ep of any subspace E ⊆ TxM we have

χ(p)(x,E) =
p∑

i=1

χ(x, ei) . (7.32)

Our aim is, now, to deduce from this theorem some properties concerning
Hamiltonian systems. Since the flow of an Hamiltonian field is symplectic, it
preserves, in particular, the 2n-dimensional volume, and thus, according to
point (3) of the previous theorem

χ(x, TxM) =
2n∑

i=1

χi(x) = 0 .

But symplecticity gives indeed more; in the Hamiltonian case, one can show
that the spectrum of the LCEs is symmetric:

Sp(x) = {χ1(x), . . . , χn(x),−χn(x), . . . ,−χ1(x)} .

In the autonomous case the total energy is preserved, so the orbit lies
on a 2n–1 manifold E. If this hyper-surface is compact and the orbit we are
following does not belong to a stable or unstable manifold of a fixed points, it
happens that the two central LCEs are equal to 0; this means that there exist
two tangent directions along which no exponential divergence is possible. One
of these two directions has component orthogonal to the energy surface E,
and the other one is exactly the tangent field; and the presence of another
independent integral of motion implies other two zero LCEs.

7.6.3 Numerical Computation

As we showed in the previous sections, from the theoretical point of view the
LCE is a very good indicator of hyperbolicity of a motion, but some care is
needed in its actual computation. It is clear that, considering for example the
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standard definition (7.27) for the maximal LCE, the true quantities one may
compute are

χ(t, x0, ξ0) :=
1
t

ln(γ(t, x0, ξ0)) ; (7.33)

and the definition of χ, as a limit for t going to ∞ of χ(t) puts immediately
into evidence the point: if the system has not a strong and say uniform hy-
perbolicity, the convergence to the limiting value may be slow, and even non
monotone if the trajectory is visiting regions of the phase space with different
behaviours. It thus may be necessary to follow the flow for long time, further
increasing the computational load given by the integration of both the orbit
and its tangent dynamic.

Moreover, the detection of weak hyperbolicity is delicate also because even
in the case of completely integrable systems, after a long-time integration, the
dynamic may exhibit a small exponential divergence of nearby orbits, due
to the errors during integration. The orbit we are following via a symplectic
algorithm is a pseudo-orbit of a small perturbation of the original system, and
thus generically no more integrable.

In what follows we briefly consider the reliability of the numerical integra-
tion of the variational equations, in the spirit of Sect. 7.3.3, and we illustrate
the algorithm used to compute all the LCEs.

Numerical Integration of Variational Equations

In the same spirit of Sect. 7.3, one might ask about the reliability of the nu-
merical integration of the tangent dynamic. If the underlying flow is given by a
natural Hamiltonian H = T +V , it turns out to be a non-autonomous Hamil-
tonian system with Hamiltonian G(u, v, t) = (1/2)〈v, v〉 − (1/2)〈A(ΦtH)u, u〉.
Integrating the flow ΦH with a symplectic algorithm of order k, and step τ ,
we evaluate A on the flow of Hτ = H + τkH ′ up to roundoff errors (see The-
orem 7.1 in Sect. 7.3.3), and the actual Hamiltonian representing the tangent
dynamic is

Gτ (u, v, t) =
1
2
〈v, v〉 − 1

2
〈A(ΦtHτ

)u, u〉 .

In order to exploit once again the good properties of symplectic integrators,
we have to extend the non conservative system given by Gτ in an autonomous
form considering t as a variable conjugated to the energy:

K(q, p, s, E) = Gτ (q, p, s)− E ;

A leap-frog type algorithm should be represented by the following map:
⎧
⎪⎪⎨

⎪⎪⎩

un+1 = un + τvn + τ2

2 A(sn)un
vn+1 = vn + τ

2A(sn)(un + un+1)
sn+1 = sn + τ
En+1 = En+1(En, sn, un, vn)

; (7.34)
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one has to check that it preserves the symplectic form ω = dun ∧ dvn +
dsn∧dEn in �2n+2. Actually there exist a result on time-dependent canonical
transformations that may be stated as follows:

Theorem 7.4. Let H(q, p, t) be a non-autonomous Hamilton function and
q = q(q, p, t), p = p(q, p, t) a time-dependent transformation which preserves
the fundamental Poisson brackets identically in t. Then the transformation
is canonical, and there exists a function F (q, p, t) such that the transformed
Hamiltonian is

H(q, p, t) = [H(q, p, t)− F (q, p, t)]q=q(q,p,t),p=p(q,p,t) .

It is easy to see that the theorem applies; and it is also possible to show that
the symplecticity constraint implies En+1 = En + f(sn, un, vn).

And now, since the map (7.34) is symplectic, by Theorem 7.1, it is almost
exactly the flow of a perturbed Hamiltonian system with Hamilton function

Kτ = K + τaK ′ .

This makes reliable also the long time integration of the tangent dynamic.

LCE’s Algorithm

We briefly illustrate here the classical [4, 5] algorithm used to calculate all the
LCEs. The first remark is that, due to the exponential increase of the length
of tangent vectors we have to renormalize the vectors from time to time to
avoid a computer overflow, and thus we use definition (7.30). The second
remark is that all the tangent vectors tend to align along the most expansive
eigenvector: to avoid a numerical undetectability of the other exponents it is
then also necessary to orthogonalize them via the Grahm–Schmidt procedure.

With some more detail, one fixes a relatively short time interval σ between
successive orthonormalizations. We have by (7.30)

χ1 = lim
n→∞

1
nσ

n∑

j=1

lnαj , αj = ‖〈DxΦσ(Φ(j−1)σ(x0)), ξ̂j−1〉‖ ,

where the hat over a vector denotes its versor.
To obtain the pth exponent, we use Definition 7.3 and the third point of

Oseledec theorem. Let us illustrate it for p = 2.

V ol2(DxΦσ(xj−1)ξj−1, DxΦσ(xj−1)ηj−1) = αjβj ,

where αj has been already defined above and

βj = ‖η⊥j ‖ , η⊥j = ηj − 〈ξ̂j , ηj〉ξ̂j .

Using (7.32) and (7.31)
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Fig. 7.8. Lyapunov exponents; χ(t) versus time. FPU α-model (N = 15, α = 1/4,
ε = 0.0398). Left panel: comparison between FPU and Toda and definition of the
trapping time. Right panel: all the LCEs for the FPU

χ1+χ2 = χ(2) = lim
n→∞

1
nσ

n∑

j=1

ln αjβj = lim
n→∞

1
nσ

n∑

j=1

ln αj+ lim
n→∞

1
nσ

n∑

j=1

ln βj ,

so that

χ2 = lim
n→∞

1
nσ

n∑

j=1

ln βj .

We conclude this part remarking that in actual computations we always
used the energy norm instead of the Euclidean one, since it fits better with
the problem and gives cleaner numerical results.

7.6.4 Some Results and Discussion

We present here few examples of computations of LCEs. The first one is
inspired by [12], where a comparison between the maximal LCE of the FPU
and of the Toda model is performed. The Toda chain is a system of the form 7.1
too, but with a potential

V (s) =
e2αs

4α2
,

whose Taylor development coincides up to the third order with the FPU one
(see (7.2) and exploit boundary conditions); such a model turns out to be
integrable. Because of this property its LCEs are all zero, and thus the actual
quantities χToda(t) one calculates [see formula (7.33)] go to zero as (ln t)/t.
Exploiting such a fact they define the “trapping time” tτ as the first time
at which the time evolution of the maximal χFPU(t) detaches from that of
the Toda chain, provided the two system have been considered with the same
initial datum.
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A computation of this kind is shown in Fig. 7.8: the quantity described
above can be identified quite clearly. On the other hand its dynamical meaning
appears to be not so well defined. The interpretation given in [12], which
states that the two systems share almost the same evolution up to tτ , and
after that FPU one reaches a chaotic regime, is for sure too strong. In fact
one has to remember that the LCEs give local indications related to a single
orbit: if the system is ergodic, and thus it is possible to explore almost all
the phase space following one trajectory, then the local information turns out
to be essentially global. Moreover the precise time tτ is directly related to
the strength of the maximal LCE, i.e. it represents the time needed to detect
it in the actual computation. All this considerations are confirmed by the
experiments with other indicators, like those in Figs. 7.11 and 7.12, where
evidence of a different behaviour is shown before the trapping time, and those
in Figs. 7.9, 7.13 and 7.14, where evidence of a non-complete chaotic behaviour
after the trapping time is given.

Another observation one can have from these experiments is a confirma-
tion of what we said defining the quantity χ(t) in formula 7.33: in fact looking
at the maximal LCE in Fig. 7.12 it is very clear that the local contribution
constituted by γ(t) may well change during the evolution, depending on the
different regions the orbit is visiting; the value of χ(t) one obtains during the
computation, even if it seems stabilized, is not necessarily a good approxima-
tion of the true exponent.

A further indication of the existence of different parts of the phase space
comes from the computation of all the LCEs, as shown in the right panel
of Fig. 7.8: although the first three exponents exhibit a substantially stable
behaviour, the other ones experience a sudden increase for time slightly less
than 108. This computation confirms that also the smaller LCE contains use-
ful information concerning the hyperbolicity around the orbit. Unfortunately
these computations are really heavy from the numerical point of view.

We remark once again, looking at Fig. 7.9, the locality of the information
carried by the LCE: in fact the distribution of harmonic energies still shows
a lack of equipartition at times equal to 108.

In the previous discussion of the results one can obtain using the LCEs, we
stressed some of their limits: their local nature in space and time, the effect
of the averaging process which forces to longer computations to detect small
exponents, the numerical difficulties in the computing of all the exponents in
order to have a better image of exponential divergence. In the next section we
present some different indicators, again based on the tangent dynamic, which
try to solve some of these problems.

7.6.5 Variations on the Theme

With respect to the LCEs, which are good indicators for irregular and stochas-
tic regions of the phase space, we will discuss now some variants, developed
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Fig. 7.9. Time averaged distributions of harmonic energies at different times, for
the same orbit of Fig. 7.8. Abscissæ: the mode number k. Ordinates: the energy of
the modes averaged up to time t reported in the label

during the last decade; they appear to better identify also regular orbits, be-
ing able to distinguish between resonant (islands) or non-resonant (KAM tori)
regular orbits too. Moreover they have the advantage of requiring a shorter
evolution time for their computation, since they typically avoid the averaging
over time; nevertheless, in the presence of weak chaos and small LCEs, they
also require a time which is inversely proportional to the LCEs to see their
effect.

Smaller Alignment Index: SALI

In this paragraph we will consider the smaller alignment index (SALI), which
has been introduced and developed by Skokos [41, 42] starting from 2001. This
method can in principle reveal an exponential divergence of nearby orbits
earlier than the maximum LCE. The main idea is to perform integration
of variational equations for two different initial vectors ξ0, η0 and to obtain
a simple measure of how much parallel the two vectors become during the
evolution. At every fixed time-interval each vector is normalized and, after
having defined

d−(t) := ‖ξ(t)− η(t)‖ , d+(t) := ‖ξ(t) + η(t)‖ ,

we look for the minimum between d− and d+

SALI := min(d−(t), d+(t)) .

This is not the only choice: one could directly measure the angle between
the vectors computing the inner product 〈ξ(t), η(t)〉. But some care should be
taken, since if the two vectors are almost parallel, the SALI is small, say O(δ),
but 1 − 〈ξ(t), η(t)〉 is smaller, actually O(δ2); and so the alignment may be
revealed even faster than with SALI, although with more sensitivity to some
noise, and the choice of the threshold could be critical.
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If the orbit admits some positive LCEs, then all the solutions of the varia-
tional equations tend to be aligned to the most expansive hyperbolic eigenvec-
tor. Let us further investigate what one may deduce if such alignment of the
tangent vectors actually occurs. Consider the non-isochronous Hamiltonian
H = 〈ω(I), I〉, whose solution is, in general, a quasi-periodic orbit over the
torus identified by the initial values of I = (I1, . . . , IN ):

Φt(I(0), ϕ(0)) :=
{
Ij(t) = Ij(0)
ϕj(t) = ϕj(0) + ωj(I(0))t .

The Jacobian of the flow with respect to the phase variables I, ϕ represents the
solution of the variational equations; in this case, ifX = (XI

1 , . . . , X
I
N , X

ϕ
1 , . . . ,

Xϕ
N ) is a generic tangent vector, we have

〈D(I,ϕ)Φt, X〉 =
(

XI

Xϕ + t(DIω) ·XI

)
. (7.35)

From the previous formula one deduces that every initial vector X will be
oriented and will become tangent to the N dimensional torus: Such evolution
is not exponentially fast, but linear, accordingly with the regularity of the
dynamic. The second remark is that if one considers two vectors, they will
both collapse on the same lower dimensional tangent space, but there is no
reason for them to get aligned within this subspace; the only possibility is
that of a system with only one degree of freedom, because in such a case the
space tangent to the torus is one-dimensional and all the vectors within it are
obviously parallel.

We may thus conclude that in the case of a regular orbit, if the dimension
N is greater than 1, SALI will tend to a constant value, while in the degenerate
case N = 1 it will go to zero as a power law.

As it has been shown in the above quoted papers, SALI has the advantage
of reaching in few iterations the limit of accuracy of the computer, putting
into evidence (see left panel of Fig. 7.10) a strong divergent phenomenon well
before LCE reaches its proper value.

A Generalization of SALI

In the discussion of the LCEs we showed how it is possible to obtain more
detailed information considering all the exponents, not only the maximal one.
In the same spirit we tried to generalize the SALI indicator by computing not
only the “maximal” one, but all the small alignment indexes.

To this end we considered two sets V1 and V2 of n vectors; for each set
independently we performed the same procedure one uses to compute all the
LCEs, with repeated orthonormalizations during the evolution with the tan-
gent dynamic. Under the action of the hyperbolic directions, if present, one
vector v1

1 ∈ V1 and one v2
1 ∈ V2 will become parallel, as in the original SALI
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Fig. 7.10. FPU α-model, same orbit of Fig. 7.8 (N = 15, α = 1/4, ε = 0.0398).
Left panel: the original SALI1 versus time, showing the first alignment before 106.
Central panel: the total SALIT versus time, showing a complete alignment for times
close to 108. Right panel: the NAD versus time, showing the increase, in the time
interval 106–108, of the number of directions aligned

method, along the most expansive eigenvector e1. If there exist a second pos-
itive LCE, another couple of vectors v1

2 , v
2
2 will tend to align, not along the

second eigenvector, but, due to the orthogonalization, along its projection
over the plane orthogonal to e1. The time needed for each successive couple of
vectors to align depends on the strength of the corresponding LCE. We notice
that last couple v1

n, v
2
n will be forced to align due to the orthogonality to all

the other vectors.
In actual computations, we performed the above described procedure with

two initial sets of n orthonormal vectors: the first one oriented as the natural
basis of Rn, and the second one randomly oriented. For each couple of vectors
we have computed the single quantities d−j (t) = ‖v1

j (t) − v2
j (t)‖ and d+

j (t) =
‖v1
j (t) + v2

j (t)‖, and we defined

SALIj := min(d−j (t), d+
j (t)) , SALIT =

n∑

j=1

SALIj .

As we said, SALI1 is nothing but the SALI defined by Skokos, so it can
reveal whether an exponential divergence has occurred or not.

In Fig. 7.10 we report some computations of this indicator: comparing the
first two panels with Fig. 7.8 it is possible to observe a substantial agreement
of the time given by SALI1 with the time at which the maximal LCE stops
going to zero, and of the time given by SALIT with the time at which all the
LCEs begin to manifest their positivity.

In the right panel we show a quantity derived from SALIT (actually from
the version obtained computing the angle 1−〈ξ(t), η(t)〉) which measures the
Number of Aligned Directions (NAD):
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Fig. 7.11. Volumetric angle versus time described by 15 vectors up to time 3.5×105.
N = 15 for all the models. Left panel: non-interacting harmonic oscillators. Central
panel: Toda chain (initial datum equal to that of FPU chain). Right panel: FPU α-
model, (α = 1/4, ε = 0.0398, same orbit as in Figs. 7.8, 7.9 and 7.10). The first two
systems are both integrable, but the indicator seems to detect the non-isochronous
nature of the Toda lattice. Moreover the non-integrable nature of the FPU is visible
from the very beginning in the comparison between Toda and FPU

NAD(t) :=
n∑

j=1

[1− SALIj + ε] ,

where [x] is the integer part of x, and ε is a small constant used to set a thresh-
old. This indicator gives an estimate of the number of hyperbolic directions
which are already explicitly visible.

We must say that Poincaré sections (see Sect. 7.7) show that a weak and
local chaos has appeared before the time indicated by these experiments.

As a further comment we say that SALIT and NAD could be easily used
to detect a time of full, though local, hyperbolicity when all the expanding
directions make their action visible. One should then study the scaling of
that time with the (specific) energy. This task, however, turns out to be very
hard from the computational point of view, because, for this indicator, the
evolution of a double number of tangent vectors is required.

Volumetric Angle

Searching for other tools to detect differences, on short timescales, between the
FPU model and the Toda one (as it is done by Poincaré sections), we tried to
compare the different decreasing rate of a kind of solid angle between a given
set of tangent vectors. In particular, considering 2 ≤ p ≤ n independent vec-
tors (e1, . . . , ep), initially orthonormalized, and following their evolution along
the tangent flow, at fixed intervals one computes the product of the sinus of
the angle between each consecutive couple (ej(t), ej+1(t)) as a measure of the
alignment of all the vectors. In Fig. 7.11 we can see the results of such experi-
ment in three different systems with the same initial datum. As expected [see
formula (7.35)], the isochronous integrable system (left panel) does not exhibit
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any alignment, since DIω = 0. In the non-isochronous integrable system (the
Toda chain, central panel) we observe a sensitive initial alignment due to the
non-zero term DIω; after this transition, the angle slightly moves around a
stable value for any long time. The last example (FPU α-model, right panel)
shows wide amplitude oscillations near the value reached in the previous case.

Fast Lyapunov Indicator: FLI

In a set of papers (see, e.g., [19, 20, 21, 22, 28, 29, 35]), Froeschlé and his col-
laborators, introduced and used the so called Fast Lyapunov Indicator (FLI).

As we discussed, the usual Lyapunov exponents have some drawbacks:
Since they are defined over the whole trajectory, they require in principle long
and expensive numerical computations, and moreover they may distinguish
only between chaotic and non-chaotic orbits, possibly giving a “measure” of
chaoticity. But the phase space structure, and thus the dynamic, is more rich
and complicated, and also within the non chaotic motions there are different
possibilities. With this respect, the FLI has exactly the advantage of being
faster to calculate, and of being able to distinguish among regular orbits,
between the resonant ones, islands and non-resonant ones, KAM tori.

The underlying idea is to consider the information contained in the initial
part of the evolution of the tangent dynamic, the part which is usually con-
sidered as a sort of initial noise whose effect is thrown away through the time
average in the limit for t → ∞; and the second point is indeed to avoid the
time average. One in fact realizes that the evolution of this indicator rapidly
distinguish between chaotic, resonant and non-resonant orbits.

A possible definitions (see [19] for a discussion on other definitions) is the
following: denoting by ξ(t) the usual time evolution of vector along the tangent
dynamic, we have:

FLI(x0, ξ0, T ) := sup
0<s<T

ln ‖ξ(s)‖ ,

where ξ(s) denotes the usual time evolution of the vector ξ0 along the tangent
dynamic.

Another great advantage of the use of FLI is that its computation on a grid
of initial conditions in the phase space gives a picture of the so called Arnold
web, i.e. the set of resonances of the system. From this point of view such a
tool turns out to be very effective. In this way one obtains a kind of global
information; and this is equivalent to that obtained by the usual Lyapunov
exponent evaluated on a single orbit only when the system is ergodic, as the
Oseledec theorem states. On the contrary, if the dynamic is not ergodic, the
information carried on by a single trajectory is for sure local.

In some of the above quoted papers (see, e.g., [28, 29, 35]), the global
geometry of the Arnold web, put into evidence by means of the FLI, allowed
the authors to carefully investigate the diffusion phenomena along resonant
lines: They obtain numerical evidence of Arnold diffusion, and estimate the



276 S. Paleari and T. Penati

exponential dependence of the diffusion coefficient from the perturbative pa-
rameter, typical of a Nekhoroshev regime.

Up to our knowledge this indicator has never been used in the FPU model,
but we think it could be interesting to investigate its Arnold web in this way.
Of course the problem, as we will discuss in the Sect. 7.7 about Poincaré
sections, is connected with the use of a low-dimensional indicator, as the FLI
is, in a problem where the thermodynamic limit is one of the relevant points.

7.7 Poincaré Sections

Even if it can be considered hopeless in non-low-dimensional systems, we tried
anyway to investigate local chaotic behaviour by means of Poincaré sections.

As usual, we consider the Poincaré map, i.e. the discretized orbit obtained
by the intersection of the whole trajectory γ(t) with a transversal hyperplane
Π ((d/dt)γ(t) �∈ Π). In dealing with perturbations of harmonic oscillators, a
proper choice for such a plane could be {pj = 0} (i.e. when one of the momenta
is zero), provided that the corresponding action Ij is non-zero. In fact, if the
projection of the orbit (qj , pj) has an oscillatory behaviour, the corresponding
velocity must change its signum. Since we considered experiments with initial
data with energy on low frequencies modes, we used as a section plane Π =
{pj = 0}, j being the index of one of those modes.

Due to the autonomous nature of the system, the orbit lies on a 2n − 1
dimensional manifold E of constant energy, and the trajectory of the map
on the 2n − 2 dimensional manifold E ∩ Π. In the optimal case of n = 2,
we can injectively project over a suitable plane, obtaining a clear drawing
of regular and chaotic orbits. For higher number of degrees of freedom, one
has to choose the plane over which to project the higher dimensional section,
and this is a delicate task. That is why, in the case of nonlinear coupling of
harmonic oscillators, we have chosen the planes of normal modes (qk, pk): if
the perturbation (energy) is not too high, the dynamics may be described
through non linear modes (or linear combination of them) close to the linear
ones. With this approach, we are thinking of a Birkhoff (resonant or not)
normal form as a good approximation of the system for our initial data. As
a matter of fact, many figures realized with a low-mode section {pj = 0}
seem to agree with the effect of an almost resonance between the first mode
and (qj , pj) (ωj − jωj = O(1/N)3). In particular we will always show, for
uniformity purposes, sections on {p3 = 0} projected on (q1, p1), and it is well
visible the underlying structure of a 1:3 resonance.

Clearly, the limit of such a qualitative study of the dynamic is the possi-
bility of producing readable pictures; in fact, since the projection is no more
injective for high n, very confused images may emerge, also in the case of
a weakly chaotic orbit, and indeed even a quasi-periodic orbit on a high-
dimensional torus may be difficult to be recognized after a projection on a
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Fig. 7.12. a The maximal LCN versus time for the FPU α-model and the Toda
lattice, computed for the orbit with the same initial starting point. Here N = 7, α =
1/4, ε = 0.25 and the phase ϕ = 0.8995π. b Poincaré section with the plane p3 = 0,
projected over the plane (q1, p1) of the orbit computed for the Toda lattice. There
is evidence of a quasi-periodic behaviour, as expected in view of the integrability of
the model. c Poincaré section for the orbit of the FPU system. The orbit appears
be be confined in a region similar to that of the Toda model, but the figure suggests
that there is a local chaotic behaviour (from [27])

plane. This explain our choice not to exceed the number of 15 particles with
this kind of numerical experiments.

7.7.1 Some Results

The first results we show concern again the comparison of the FPU system
with the Toda one, as in Sect. 7.6.4. In Fig. 7.12 we provide further evidence
that the trapping time introduced in [12] is not a very relevant and precise
dynamical indicator. In the left panel we put the comparison between the
maximal LCEs for the two systems, and in the other panel the sections cor-
responding to the two orbits, for a time interval [0, 5 × 104], i.e. before the
trapping time which may be estimated to be tτ ∼ 1.5 × 105. The clear in-
formation one obtains from the figure is that the FPU dynamics exhibits a
local chaoticity well before that time: in fact, despite the points are bounded
in a subregion of the plane (locality), they do not show the regularity of the
corresponding section for the Toda (chaoticity).

Following the same orbit of the FPU system for longer times, as illustrated
in Fig. 7.13, it is possible to see that the chaoticity remains local; in each
panel, a window of 106 time units is considered. Since we are projecting 12
dimensions over a plane, the confinement of the points of the section is a quite
strong indication that, on intermediate time scales, the evidence of an ergodic
behaviour is still missing. One may also observe that the ergodicity, possibly
recovered for t going to infinity, could be reached as the cumulative effect of
several meta-stable states that fill up the phase space, and through which the
orbit wander. It is worthwhile to remark that the pattern found in the left
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Fig. 7.13. Poincaré sections with p3 = 0 for the FPU chain, projected on the plane
(q1, p1), for the same orbit as in Fig. 7.12c, with a time window of 106 and initial
times indicated above each panel (from [27])

panel reappears for times close to 109, remaining unchanged for more than
1.5× 107 time units.

A very similar situation is again visible for N = 15, and the results are
given in Fig. 7.14. The first panel shows the initial evolution on a short time
interval of 105 to give a further confirmation that the system exhibits a weak
stochasticity in very short times. The subsequent panels, on the other hand,
illustrate again the strong confinement outside thirty dimensional cylinders
emerging from the section plane.

A further remark comes from the comparison with the data shown in
Figs. 7.8 and 7.10, where the LCEs and the SALI variants are used on the
same orbit: it appears that even for times close to 108, where all the LCEs
begin to be visible and the number of aligned directions reaches its maximum,
the trajectory is still confined in bounded regions of the phase space.

7.7.2 Discussion

The remarkable aspect concerning the use of Poincaré sections is the problem
of the dimensionality, as we already discussed at the beginning of this section.
This tool is clearly a low-dimensional one, but once again it may give non suf-
ficient but necessary conditions to reach a regime compatible with Statistical
Mechanics. In fact, if one is able, as we do, to show that the projections of
the points of the Poincaré map remain confined in bounded regions, then it
can be safely concluded that the orbit does not visit the whole energy surface
within the quite long time scale considered.

As argued in [27], analysing some features of the dynamics through the use
of the Lyapunov exponents (see Sect. 7.6) and the use of Poincaré sections,
one might imagine a scenario in which, lowering the specific energy, the phase
space contains many subregions where the dynamics is frozen for very long
times: the equipartition could be seen only on the infinite time scale, as a
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Fig. 7.14. Poincaré sections with p3 = 0 for the FPU chain, projected on the plane
(q1, p1), for the FPU α-model (N = 15, α = 1/4, ε = 0.0398), actually the same orbit
as in Figs. 7.8, 7.9 and 7.10. In the left panel a time window of 105 is considered,
in order to show the local chaoticity from the very beginning of the evolution. The
other panel represent time window of 5×105, and show the confinement still evident
after long times

results of the wandering, that happens from time to time, of the orbits among
the different regions. In this respect, the presence of a third branch in the left
panel of Fig. 7.5, in the Sect. 7.4 concerning the natural packets, may be seen
as a further element supporting this interpretation, once it is considered as
an intermediate meta-stable state between the natural packet and the reach
of equipartition.
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An Integrable Approximation for the
Fermi–Pasta–Ulam Lattice

Bob Rink∗
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Abstract. This contribution presents a review of results obtained from computa-
tions of approximate equations of motion for the Fermi–Pasta–Ulam lattice. These
approximate equations are obtained as a finite-dimensional Birkhoff normal form.
It turns out that in many cases, the Birkhoff normal form is suitable for application
of the KAM theorem. In particular, this proves Nishida’s 1971 conjecture stating
that almost all low-energetic motions of the anharmonic Fermi–Pasta–Ulam lattice
with fixed endpoints are quasi-periodic. The proof is based on the formal Birkhoff
normal form computations of Nishida, the KAM theorem and discrete symmetry
considerations.

8.1 Introduction

The Fermi–Pasta–Ulam (FPU) lattice is the famous discrete model for a con-
tinuous nonlinear string, introduced by Fermi, Pasta and Ulam [9]. It consists
of a number of equal point masses that nonlinearly interact with their near-
est neighbors. Assuming the lattice consists of a finite number of particles N
and satisfies periodic boundary conditions, the physical variables of the FPU
lattice are the positions qj (j ∈ Z/NZ) of the particles, see Fig. 8.1, and their
conjugate momenta pj (j ∈ Z/NZ).

qj

Fig. 8.1. Schematic picture of the FPU lattice

∗ The author is supported by an EPSRC postdoctoral fellowship and an MSRI
general membership.

B. Rink: An Integrable Approximation for the Fermi–Pasta–Ulam Lattice, Lect. Notes Phys.

728, 283–301 (2008)

DOI 10.1007/978-3-540-72995-2 8 c© Springer-Verlag Berlin Heidelberg 2008



284 B. Rink

Positions and momenta are elements of the 2N -dimensional space of qjs and
pjs, the cotangent bundle T ∗

R
N . Equipped with the canonical symplectic form

dq ∧ dp :=
∑N
j=1 dqj ∧ dpj this is a symplectic manifold and a Hamiltonian

function H : T ∗
R
N → R generates the Hamiltonian vector field XH implicitly

defined by the relation dq ∧ dp(XH, ·) = dH . That is the integral curves of
XH are the solutions of the system of ordinary differential equations

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, j ∈ Z/NZ .

For the FPU lattice, the Hamiltonian function is the sum of the kinetic ener-
gies of all the particles and the interparticle potential energies:

H =
∑

j

1
2
p2
j +W (qj+1 − qj) , (8.1)

in which W : R → R is traditionally a potential energy density function of
the form

W (x) =
1
2!
x2 +

α

3!
x3 +

β

4!
x4 . (8.2)

The parameters α and β measure the nonlinearities in the forces between the
particles in the lattice.

Fermi, Pasta and Ulam were interested in the statistical properties of the
nonlinear FPU lattice. In fact, they expected that it would attain a thermal
equilibrium, as is expected in statistical mechanics. This means that the initial
energy of the lattice should be redistributed and, averaged over time, equipar-
titioned among all the Fourier modes of the lattice, see [18]. They performed
a numerical experiment to investigate how and at what time-scale this would
occur. The astonishing result of their integrations was that there was no sign
of energy equipartition at all, see [9] and [18]: energy that was initially put in
one Fourier mode was shared by only a few other modes. Moreover, within a
rather short time nearly all the energy in the system returned to the initial
mode. This recurrent behavior has been observed in experiments on the FPU
lattice with quite small as well as very large numbers of particles, on short
and long time-scales, and we are led to believe that at low energy the FPU
lattice behaves more or less quasi-periodically. This observation was a big sur-
prise. On the other hand, when the initial energy of the lattice is larger then
a certain threshold, equipartition indeed occurs.

For a theoretical understanding of the FPU experiment, one has often tried
to link the FPU lattice to a completely integrable system. These are dynami-
cal systems possessing a complete set of integrals of motion and therefore they
display the regular type of behavior that was observed in the FPU experiment.
More precisely, it is well known [2] that periodic and quasi-periodic motion is
typical in completely integrable finite-dimensional Hamiltonian systems due
to the theorem of Liouville–Arnol’d. The FPU lattice is not completely inte-
grable, but one can nevertheless remark the following.
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First, it turns out that the special FPU lattice for which

W (x) =
1
a2

eax − 1
a2

(1 + ax) =
1
2!
x2 +

a

3!
x3 +

a2

4!
x4 +

a3

5!
x5 + . . .

is in fact completely integrable. This lattice is called the Toda lattice, and it
possesses a Lax pair representation as was shown by Flaschka in [10]. For the
general FPU lattice such a thing is definitely not true.

On the other hand, it is not difficult to derive integrable partial differential
equations for the asymptotic evolution of long low-amplitude waves in FPU
chains with a large number of particles. The first theoretical understanding of
the FPU experiment therefore came when Zabusky and Kruskal [30] formally
derived that the evolution of long unidirectional waves of low amplitude is at
lowest order governed by a Korteweg–de Vries (KdV) equation. For instance,
one may set ε := 1

N � 1 and assume the existence of a smooth function
uL = uL(τ, ξ) such that qj(t) = εuL(ε3t, ε(t + j)). One now quickly derives
that this two time-scale traveling wave Ansatz leads to the identity uL

τξ =
α
4 u

L
ξ u

L
ξξ + 1

24u
L
ξξξξ +O(ε2). On setting vL = uL

ξ , this reduces to vL
τ = α

4 v
LvL
ξ +

1
24v

L
ξξξ + O(ε2). This is the easiest way I know to formally obtain a KdV

equation for the evolution of unidirectional waves—in this case traveling to
the left.

By studying the KdV equation numerically, Kruskal and Zabusky discov-
ered the stability of the interaction of its solitons. It was later proved by
Gardner et al. [13] that the KdV equation has infinitely many integrals. In
fact, Peter Lax realised that KdV is a member of a hierarchy of integrable
equations that have a Lax-pair, and therefore a complete set of integrals. See
[21] for a good overview of these results. We now know that the solutions of
the KdV equation (and all other equations in the KdV hierarchy) are almost-
periodic, with a dense set of quasi-periodic solutions, see [19]. This could
explain, to some extent, the observation of quasi-periodicity in the FPU ex-
periment, although the exact connection between FPU and KdV is not very
clear from the above formal derivation.

In order to derive the KdV equation rigorously, one may proceed as follows.
First, one writes an exact evolution equation for an interpolation function u:
setting again ε := 1

N � 1, and assuming that qj(t) = εu(t, εj) for a smooth
function u = u(t, x),R × R/Z → R, it is clear that qj(t) satisfies the FPU
equations of motion if u satisfies the evolution equation

utt(t, x) =
1
ε
W ′ (εu(t, x+ ε)− εu(t, x))− 1

ε
W ′ (εu(t, x)− εu(t, x− ε))

One should think of this equation as a second-order ordinary differential equa-
tion on a space of smooth functions of x of period 1. One now proceeds by
defining the discrete Riemann-invariants
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UL(t, x) :=
1
ε

(ut(t, x) + u(t, x+ ε/2)− u(t, x− ε/2))

UR(t, x) :=
1
ε

(ut(t, x)− u(t, x+ ε/2) + u(t, x− ε/2))

and observing, by Taylor expanding u(t, x± ε/2) and u(t, x± ε) with respect
to ε, that the corresponding evolution equations for UL and UR can be ex-
pressed as

UL
t = εUL

x + ε3
(
α

4
(UL − UR)(UL

x − UR
x ) +

1
24
UL
xxx

)
+ O(ε5)

UR
t = − εUR

x + ε3
(
α

4
(UL − UR)(UL

x − UR
x )− 1

24
UR
xxx

)
+ O(ε5)

Quite remarkably, it turns out that it is possible to make a small transforma-
tion (UL, UR) �→ (ŨL, ŨR) = (UL, UR) + O(ε) in a suitable space of smooth
periodic functions of x that removes all coupling terms from the above evo-
lution equations. In other words, the evolution equations for ŨL and ŨR can
be expressed as

ŨL
t =εŨL

x + ε3
(
α

4
ŨLŨL

x +
1
24
ŨL
xxx

)
+ O(ε5)

ŨR
t =− εŨR

x + ε3
(
α

4
ŨRŨR

x −
1
24
ŨR
xxx

)
+ O(ε5)

This means that ũL(t, x) := ŨL(t, x− εt) and ũR(t, x) := ŨR(t, x+ εt) satisfy
approximate KdV equations, arising after a coordinate transformation as a
“resonant normal form”. It is not very hard to prove the long (but finite)
time validity of these KdV equations. A result of this kind was proved by
Bambusi and Ponno in [3], where the above transformation is obtained by the
so-called method of averaging and the above estimates are made precise. A
similar result was obtained by Wayne and Schneider in [28], although these
authors use a multiple scales method. I am at the moment not aware of any
results stronger than the long time validity of the KdV equations. It seems
to be completely unknown, for example, whether any of the quasi-periodic
solutions of the KdV equations persist (as KAM tori) in the FPU lattice.

Persistence results for quasi-periodic tori are easier to obtain in the finite
dimensional setting. In the remainder of this paper, we shall therefore view
the FPU lattice as a finite dimensional dynamical system. As is well-known
[2], periodic and quasi-periodic motion is typical in completely integrable fi-
nite dimensional Hamiltonian systems. Unfortunately, apart from the Toda
lattice, the FPU lattice is not completely integrable. One possible explana-
tion of the recurrent behavior of the lattice is therefore based on the famous
Kolmogorov–Arnol’d–Moser (KAM) theorem [2, 4]. This theorem explains
that large measure Cantor sets of quasi-periodic motions can also exist in
classes of nonintegrable Hamiltonian systems, namely those that can be viewed
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as small perturbations of certain integrable Hamiltonian systems. The restric-
tive requirement is that the integrable system that we are perturbing satisfies
a nondegeneracy condition, which requires that each quasi-periodic motion of
the integrable system has a different frequency. Even though various—again
heuristic—arguments advocate this approach, and I mention in particular
[17], the big problem is that it is not at all a priori clear whether the fi-
nite dimensional FPU lattice can really be viewed as a perturbation of such
a nondegenerate integrable Hamiltonian system. The only obvious integrable
approximation to the FPU lattice is its linearization, which is highly degen-
erate as its frequency map is constant. Exactly this problem was pointed out
for instance in the review paper by Ford [11] and the book by Weissert [29],

An interesting attempt to prove the applicability of the KAM theorem
arises in a paper by Nishida [20], who in 1971 considered the FPU lattice
with a finite number of particles, fixed endpoints and symmetric potential
energy density function (the so-called β-lattice). Analogous to the normal form
construction for the derivation of the two KdV equations, Nishida computes
the so-called Birkhoff normal form for the finite dimensional FPU lattice.
Assuming a rather strong nonresonance condition on the frequencies of this
lattice, he shows that this normal form constitutes a nondegenerate integrable
approximation to the original lattice Hamiltonian. In this way, he proves the
applicability of the KAM theorem and the existence of a positive measure set
of quasi-periodic motions in the nonlinear FPU lattice. But note that all of this
is under the assumption of a nonresonance condition, which unfortunately is
only satisfied in exceptional cases. The actual value of Nishida’s computation
therefore remains unclear.

This contribution is based on [25], which is devoted to a full proof of what
Nishida intended to show. Let me summarize the main result of [25] as follows:

The Fermi–Pasta–Ulam lattice with fixed endpoints and an arbitrary
finite number of moving particles possesses a completely integrable fi-
nite order Birkhoff normal form, which constitutes an integrable ap-
poximation to the original Hamiltonian function. The integrals are
the linear energies of the Fourier modes. When the potential energy
density function of the lattice is an even function (β-lattice), this in-
tegrable approximation is nondegenerate in the sense of the KAM-
theorem. This proves the existence of a large-measure set of quasi-
periodic motions in the low-energy domain of the β-lattice.

The key to proving this result lies in the fact that Nishida’s nonresonance
condition, which a priori seems highly necessary for computing the Birkhoff
normal form, is actually obsolete. As in [23, 24], which treat the FPU lattice
with periodic boundary conditions, discrete symmetries are the key to proving
Nishida’s “conjecture”. The results of the present paper can be considered as
an extension of [23] to the lattice with fixed endpoints with a considerably
simpler proof which again uses discrete symmetry together with a simple
algebraic trick.
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I want to remark here that the results of this paper do not provide any
explicit bounds on the domain of validity of the normal form approximation.
In particular we have at this moment no estimates on the behavior of this
domain when n grows to infinity. The principal interest of the result lies in
the fact that, at least to my knowledge, it is the first complete proof of the very
existence of quasi-periodic motion in the FPU lattice with fixed endpoints.

8.2 Discrete Symmetry

The Hamiltonian function (8.1) of the periodic FPU lattice (i.e. summation
over j ∈ Z/NZ) has discrete symmetries of which we shall discuss some dy-
namical consequences. Two important symmetries of the periodic FPU lattice
are the linear mappings R,S : T ∗

R
N → T ∗

R
N defined by

R :(q1, q2, . . . , qN−1, qN ; p1, p2, . . . , pN−1, pN) �→
(q2, q3, . . . , qN , q1; p2, p3, . . . , pN , p1)

S :(q1, q2, . . . , qN−1, qN ; p1, p2, . . . , pN−1, pN) �→
− (qN−1, qN−2, . . . , q1, qN ; pN−1, pN−2, . . . , p1, pN )

It is easily checked that R and S are canonical transformations that leave the
periodic FPU Hamiltonian (8.1) invariant, i.e. R∗(dq ∧ dp) = S∗(dq ∧ dp) =
dq∧dp and R∗H(= H ◦R) = S∗H(= H ◦S) = H . This implies that R∗XH =
XR∗H = XH and S∗XH = XS∗H = XH, that isR and S conjugate the Hamilto-
nian vector field XH to itself. This in turn implies that R and S commute with
the time-t flows etXH of XH. Canonical diffeomorphisms with this property
are called symmetries of H and the group of symmetries of H is denoted GH.
The subgroup 〈R,S〉 = {Id, R,R2, . . . , RN−1, S, SR, SR2, . . . , SRN−1} ⊂ GH

is isomorphic to the Nth dihedral group, the symmetry group of the N -gon, as
its elements satisfy the multiplication relations RN = S2 = Id, SR = R−1S.
As R and S are linear mappings, the elements of 〈R,S〉 actually define a
representation of DN in T ∗

R
N by symplectic mappings.

For every subgroup G ⊂ GH , we define the fixed point set

Fix G = {(q, p) ∈ T ∗
R
N |P (q, p) = (q, p) ∀P ∈ G} (8.3)

Let (q, p) ∈ Fix G and P ∈ G. Then P (etXH(q, p)) = etXH(P (q, p)) =
etXH(q, p), i.e. etXH(q, p) ∈ Fix G. Thus we see that Fix G is an invariant
manifold for the flow of XH . Classification of the fixed point subgroups of the
different subgroups of GH leads to a collection of invariant manifolds, listed
for instance in [24]. Other authors, cf. [5], have baptized these invariant man-
ifolds bushes of normal modes. The restriction of a Hamiltonian vector field
to a fixed point set of a group is often easy to compute:

Proposition 8.1. When G is compact and consists of linear symplectic iso-
morphisms of T ∗

R
n, then Fix G is a symplectic manifold with the restriction
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to Fix G of dq ∧ dp as symplectic form. This implies that whenever XH is
tangent to Fix G, in particular when H is G-symmetric,

(XH)|Fix G = X(H|FixG)

Proof. Clearly, Fix G = ∩P∈G ker(P − Id) is a subspace of T ∗
R
N , and hence

a submanifold. It remains to be proven that for every (q, p) ∈ Fix G, the
restriction of dq ∧ dp to T(q,p)(Fix G) ⊂ T(q,p)(T ∗

R
N ) is nondegenerate. Let

us first of all identify T(q,p)(T ∗
R
N ) by T ∗

R
N and T(q,p)(Fix G) by Fix G and

moreover note that since G is compact, it contains a unique left-invariant
probability measure “dP,” called the Haar-measure of G. We can therefore
define the operator

avG : T ∗
R
N → Fix G , v �→

∫

G

P (v)dP

The operator avG is a projection of T ∗
R
N onto Fix G, called “averaging over

G.” Now let v ∈ Fix G and w ∈ T ∗
R
N . Then one easily computes that

(dq ∧ dp)(v, avG(w)) = (dq ∧ dp)(v,
∫

G

P (w)dP ) =
∫

G

(dq ∧ dp)(v, P (w))dP

=
∫

G

(dq ∧ dp)(P (v), P (w))dP =
∫

G

(dq ∧ dp)(v, w)dP = (dq ∧ dp)(v, w)

where in the second equality we have used the linearity of dq∧dp in its second
argument, in the third equality the fact that v ∈ Fix G, and in the fourth
equality that every P ∈ G is symplectic. We now observe that when v ∈ Fix G
and (dq∧dp)(v, w) = 0 for every w ∈ Fix G, then (dq∧dp)(v, w) = 0 even for
every w ∈ T ∗

R
N . Hence dq ∧ dp, when restricted to Fix G ∼= T(q,p)(Fix G),

is a nondegenerate anti-symmetric bilinear form. In other words, Fix G is a
symplectic subspace of T ∗

R
N . The final statement of this proposition follows

trivially from this result.

Let us now look at the fixed point set of one particular subgroup of the
symmetry group of the periodic FPU lattice with an even number N = 2n+2
of particles, namely the group 〈S〉 = {Id, S}:

Fix 〈S〉 = {(q, p) ∈ T ∗
R
N |qj = −q2n+2−j , pj = −p2n+2−j ∀j}

Clearly, in Fix 〈S〉, q0 = qn+1 = p0 = pn+1 = 0. Thus we see that
Fix 〈S〉 is filled with solutions (q1(t), . . . , qN (t); p1(t), . . . , pN(t)) for which the
(q1(t), . . . , qn(t); p1(t), . . . , pn(t)) constitute the general solution curves of the
FPU lattice with fixed endpoints and n moving particles. Hence, the FPU lat-
tice with fixed endpoints and n particles is embedded in the periodic lattice
with 2n+2 particles. By Proposition 8.1, it can be described as a Hamiltonian
system on Fix 〈S〉, which has the restriction of dq ∧ dp as symplectic form,
and is determined by the Hamiltonian function H |Fix 〈S〉. As coordinates on
Fix S one could choose (q1, . . . , qn; p1, . . . , pn).
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8.3 Quasi-particles

Of course, the representation of DN on T ∗
R
N is the sum of irreducible repre-

sentations. It is quite natural to choose coordinates on T ∗
R
N that are adapted

to these irreducible representations. For the periodic lattice, we thus make the
following real-valued Fourier transformation. For 1 ≤ k < N

2 define:

Qk=

√
2
N

∑

j∈Z/NZ

sin
(

2jkπ
N

)
qj , Pk=

√
2
N

∑

j∈Z/NZ

sin
(

2jkπ
N

)
pj

QN−k=

√
2
N

∑

j∈Z/NZ

cos
(

2jkπ
N

)
qj , PN−k=

√
2
N

∑

j∈Z/NZ

cos
(

2jkπ
N

)
pj

QN =
1√
N

∑

j∈Z/NZ

qj , PN =
1√
N

∑

j∈Z/NZ

pj

and if N is even:

QN
2

=
1√
N

∑

j∈Z/NZ

(−1)jqj , PN
2

=
1√
N

∑

j∈Z/NZ

(−1)jpj

The new coordinates (Q,P ) are called quasi-particles or phonons. The trans-
formation (q, p) �→ (Q,P ), T ∗

R
N → T ∗

R
N is symplectic and one can express

the Hamiltonian in terms of Q and P . If we write for (8.1)

H = H2 +H3 +H4

where H2 is a quadratic polynomial in (q, p) and H3 and H4 cubic and quartic
polynomials in q, then we find that (see [18], [22] or [26])

H2 =
N∑

k=1

1
2
(P 2
k + ω2

kQ
2
k) (8.4)

in which for k = 1, . . . , N the numbers ωk are the well-known normal mode
frequencies of the periodic FPU lattice:

ωk := 2 sin
(
kπ

N

)

This means that written down in quasi-particles, the equations of motion of
the harmonic lattice (α = β = 0) are simply the equations for N−1 uncoupled
harmonic oscillators and, as ωN = 0, one free particle. In fact, the Hamiltonian
system is Liouville integrable in this situation. Integrals are for instance the
linear energies

Ek :=
1
2
(P 2
k + ω2

kQ
2
k)
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The FPU model is of course much more interesting when the forces between
the particles are nonlinear, i.e. when α or β is nonzero. The normal modes
then interact in a complicated manner that is governed by the Hamiltonians
Hr (r = 3, 4), which are of the form

Hr =
∑

θ:|θ|=r
cθ

N−1∏

k=1

Qθk

k (8.5)

Here the θ are multi-indices and the cθ are real coefficients. Note that for
every value of α and β, H is independent of QN = 1√

N

∑
j qj . Hence the

total momentum PN = 1√
N

∑
j pj is a constant of motion and the equa-

tions for the remaining variables are completely independent of (QN , PN ).
It is common to set the latter coordinates equal to zero, thus remaining
with a system on T ∗

R
N−1 with coordinates (Q1, . . . , QN−1, P1, . . . , PN−1).

As ω1, . . . , ωN−1 > 0, we can conclude by the Morse Lemma or Dirichlet’s
theorem [1], that the origin (Q,P ) = 0 is a dynamically stable equilibrium of
this reduced system.

Assume again that N = 2n+2. From the definition of the quasi-particles and
the definition of S, we conclude that S acts as follows in Fourier coordinates

S : (Q1, . . . , QN−1;P1, . . . , PN−1) �→
(Q1, . . . , Qn,−Qn+1, . . . ,−QN−1;P1, . . . , Pn,−Pn+1, . . . ,−PN−1)

So that

Fix〈S〉 = {(Q,P ) ∈ T ∗
R
N−1 | Qk = Pk = 0 ∀ n+ 1 ≤ k ≤ N − 1 }

which is a symplectic manifold isomorphic to T ∗
R
n. Using the coordinates

(Q1, . . . , Qn; P1, . . . , Pn) on Fix〈S〉, the restriction of the symplectic form∑N
j=1 dQj ∧dPj to Fix 〈S〉 is simply

∑n
j=1 dQj ∧dPj . By Proposition 8.1, the

Hamiltonian of the fixed endpoint lattice thus is simply the restriction of the
periodic FPU Hamiltonian (8.4, 8.5) to Fix〈S〉, that is

H |Fix〈S〉 =
n∑

k=1

1
2
(P 2
k + Ω2

kQ
2
k)

+ H3(Q1, . . . , Qn, 0, . . . , 0) +H4(Q1, . . . , Qn, 0, . . . , 0)

To distinguish we have used the notation Ωk := ωk = 2 sin( kπ
2n+2 ) (1 ≤ k ≤ n)

for the linear frequencies of the fixed endpoint lattice.

8.4 The Birkhoff Normal Form

Nishida’s idea was to study the Hamiltonian of the fixed endpoint lattice
using Birkhoff normalisation, which is a way of constructing a symplectic near-
identity transformation of the phase-space with the purpose of approximating
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the original Hamiltonian system by a simpler one. The study of this “Birkhoff
normal form” can lead to important conclusions about the original system.
For r ≥ 2, let Fr be the finite-dimensional space of homogeneous rth degree
polynomials in (Q,P ) on T ∗

R
N−1 and let F :=

⊕
r≥2Fr. With the Poisson

bracket {·, ·} : F × F → F defined by

{F,G} :=
N−1∑

k=1

∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

F is a so-called graded Lie-algebra, which means that {Fr,Fs} ⊂ Fr+s−2.
With this definition, we have for each F ∈ F , the “adjoint” linear operator

adF : F → F , G �→ {F,G}

We recall the following result, a complete proof of which can be found for
instance in [6, 7, 12].

Theorem 8.1. (Birkhoff normal form theorem). Let H = H2 +H3 + · · · ∈ F
be a Hamiltonian on T ∗

R
N−1 such that Hr ∈ Fr for each r and

adH2 : G �→ {H2, G} , Fr → Fr
is semi-simple (i.e. complex-diagonalizable) for every r. Then for every finite
s ≥ 3 there is an open neighbourhood 0 ∈ U ⊂ T ∗

R
N−1 and a symplectic

diffeomorphism Φ : U → T ∗
R
N−1 with the properties that Φ(0) = 0, DΦ(0) =

Id and
Φ∗H = H2 +H3 + · · ·+Hs + O(||(Q,P )||s+1)

where
adH2(Hr) = 0

for every 3 ≤ r ≤ s. The transformed and truncated Hamiltonian H := H2 +
H3 + · · ·+Hs is called a Birkhoff normal form of H of order s.

Idea of proof. For H,F ∈ F , the curve t �→ (etXF )∗H = H ◦ etXF in F
satisfies the linear differential equation and initial condition

d
dt

(etXF )∗H = −adF ((etXF )∗H) , (e0XF )∗H = H

This implies that

(e−XF )∗H = eadF (H) = H + {F,H}+
1
2
{F, {F,H}}+ · · ·

The transformation Φ is now constructed as the composition of a sequence of
time-−1 flows e−XFr (3 ≤ r ≤ s) of Hamiltonian vector fields XFr with Fr ∈
Fr. The idea is that we first choose F3 ∈ F3, such that H is transformed into
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(e−XF3 )∗H = H2︸︷︷︸
∈F2

+H3 + {F3, H2}︸ ︷︷ ︸
∈F3

+ · · ·︸︷︷︸
∈F4⊕F5⊕...

When adH2 is semi-simple, then F3 = ker adH2 ⊕ im adH2 and we can decom-
pose H3 = Hker

3 +H im
3 for uniquely determined Hker

3 ∈ ker adH2 and H im
3 ∈

im adH2 . If we now choose F3 such that adH2(F3) = H im
3 , which obviously is

possible, then (e−XF3 )∗H = H2 +H3 + · · · for H3 = H3 + {F3, H2} = H3 −
adH2(F3) = H3 − H im

3 = Hker
3 ∈ ker adH2 , i.e. adH2(H3) = 0. We continue

by choosing F4 ∈ F4 such that (e−XF4 )∗((e−XF3 )∗H) = H2 +H3 +H4 + · · ·
for which adH2(H4) = 0, etc. After s− 2 steps we obtain H with the desired
properties. �

The normal form H is usually simpler than the original H because it Poisson
commutes with the quadratic Hamiltonian H2. This firstly means that H2 is a
constant of motion for H and secondly that the flow t �→ etXH2 is a continuous
symmetry of H .

Also, H and H are symplectically equivalent modulo a small perturbation
of order O(||(Q,P )||s+1). Studying H instead of H thus means neglecting this
perturbation term. So we make an approximation error, but this error is very
small in the low energy domain, that is for small ||(Q,P )||. With Gronwall’s
lemma, precise error estimates can be made.

Finally, I would like to mention the ill-known bijective correspondence
between the relative equilibria of the Birkhoff normal form and the bifurcation
equations for periodic solutions obtained by Lyapunov–Schmidt reduction, as
is explained in [8].

For Hamiltonian systems with symmetry, the following elegant and well-
known result is often useful, see [6, 12]:

Theorem 8.2. Let H = H2 + H3 + · · · ∈ F and G be a group of linear
symplectic symmetries of H. Then a normal form H = H2 + H3 + · · · +Hs

for H can be constructed such that also H is G-symmetric.

This is obvious when one realizes that the “generating functions” Fr of the
proof of Theorem 8.1 can be chosen G-symmetric as well.

We shall also use the following result on normal forms of symmetric
subsystems, which trivially follows from Proposition 8.1 and the proof of The-
orem 8.2, as the transformations e−XFr induced by symmetric Hamiltonian
functions Fr leave Fix G invariant.

Corollary 8.1. Let H be a Hamiltonian function with compact symmetry
group G consisting of linear symplectic mappings. Then the normal form of
H |Fix G is simply the restriction of the symmetric normal form H of H to
Fix G, i.e.

H |Fix G = H |Fix G
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This corollary tells us that it is sufficient to compute the normal form of
the full system to know the normal forms of its symmetric subsystems. In
particular, to find the normal form of an FPU lattice with fixed endpoints, it
suffices to know the normal form of the appropriate periodic lattice. Normal
forms of periodic lattices have been studied elaborately in [23].

8.5 Nishida’s Conjecture

In his 1971 paper, Nishida proved the following result:

Theorem 8.3. (Proven by Nishida in [20]). Consider the FPU lattice with
fixed endpoints, α = 0, β �= 0 and n arbitrary. Assume moreover the fourth
order nonresonance condition on the Ωk = 2 sin( kπ

2n+2 ) (1 ≤ k ≤ n) requir-
ing that
∑n

k=1(lk −mk)Ωk �= 0 ∀ l,m ∈ {0, 1, 2, . . .}n with
∑n

k=1 |lk|+ |mk| = 4

and
∑n
k=1 |lk −mk| �= 0

Then the quartic Birkhoff normal form H = H2 + H4 of the lattice is a
function of the action variables ak := Ek/Ωk (1 ≤ k ≤ n) only and is therefore
integrable. Moreover it satisfies the Kolmogorov nondegeneracy condition

det
∂2H

∂ak∂ak′
�= 0

This implies that almost all low-energy solutions of the β-lattice with fixed
endpoints are quasi-periodic and move on invariant tori. More precisely, the
relative Lebesgue measure of all these tori lying inside the small ball {0 ≤
H ≤ ε}, goes to 1 as ε goes to 0.

As we shall see later, the numbers

n∑

k=1

(lk −mk)Ωk , for
n∑

k=1

|lk|+ |mk| = 4

are simply the eigenvalues of adH2 on F4. Nishida’s requirement that they be
nonzero except in the trivial case that lk = mk for all k thus just means that
the subspace ker adH2 ∈ F4 in which H4 must lie is very low-dimensional.
It must therefore be remarked here that the integrability of the normal form
follows almost trivially from Nishida’s nonresonance assumption. Nishida’s
article consists mainly of the explicit computation of the normal form H of
H under the nonresonance assumption in order to check its nondegeneracy.

But unfortunately, resonances do occur, implying that Nishida’s nonreso-
nance condition is often violated. We have for instance the relations
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sin(π/6) + sin(3π/14)− sin(π/14)− sin(5π/14) = 0

sin(π/6) + sin(13π/30)− sin(7π/30)− sin(3π/10) = 0

sin(π/2) + sin(π/10)− sin(π/6)− sin(3π/10) = 0

which lead to a violation of Nishida’s nonresonance condition if n + 1 is a
multiple of 21 or 15.

Nishida refers to an unpublished result of Izumi proving a much stronger
nonresonance condition on the Ωk in special cases. The result states that no
Z-linear relations between the Ωk exist if n+1 is a prime number or a power of
2. I was not able to trace back Izumi’s proof of this statement, but note that a
more general result had already been obtained in 1959 by Hemmer [14], who
actually derived an expression for the total number of independent Z-linear
relations between the Ωk (1 ≤ k ≤ n) in terms of Euler’s phi-function. It turns
out that no Z-linear relations exist if and only if n+ 1 is a prime number or
a power of 2.

Moreover, as the above examples illustrate, resonance relations between 4
eigenvalues exist for several n and Nishida’s condition is therefore sometimes
violated. In this paper we will nevertheless prove “Nishida’s conjecture” that
his theorem holds without having to impose any nonresonance condition.

8.6 Near-Integrability

Let us start with a review of some observation in [23] for the periodic FPU
lattice. First of all we note that, as the symmetry R is symplectic,

(R∗◦adH2)(G) = R∗{H2, G} = {R∗H2, R
∗G} = {H2, R

∗G} = (adH2 ◦R∗)(G)

where we have used that H2 is R-symmetric. From this result we read off that
R∗ and adH2 commute as linear operators Fr → Fr. This means that they
can be diagonalized simultaneously. In [23] this is done by introducing new
canonical coordinates (Q,P ) �→ (z, ζ) as follows. For 1 ≤ k < N

2 , we define:

zk =
1
2
(PN−k − iPk) +

ωk
2

(Qk + iQN−k)

zN−k = −1
2
(PN−k − iPk) +

ωk
2

(Qk + iQN−k)

ζk =
1

2ωk
(Pk − iPN−k)−

1
2
(QN−k + iQk)

ζN−k =
1

2ωk
(Pk − iPN−k) +

1
2
(QN−k + iQk)

and if N is even:

zN
2

=
1√
2
(QN

2
− i

2
PN

2
) , ζN

2
=

1√
2
(PN

2
− 2iQN

2
)
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It is then not hard to compute that

H2 =
∑

1≤k<N
2

iωk(zkζk − zN−kζN−k) + iωN
2
zN

2
ζN

2

which implies that if Θ, θ ∈ {0, 1, 2, . . .}N−1 are multi-indices, then

adH2 : zΘζθ �→ ν(Θ, θ)zΘζθ

in which ν is defined as

ν(Θ, θ) :=
∑

1≤k<N
2

iωk(θk − θN−k −Θk + ΘN−k) + iωN
2
(θN

2
−Θ N

2
) (8.6)

In other words, adH2 is diagonal with respect to the basis of Fr consisting
of the monomials zΘζθ for which |Θ| + |θ| :=

∑N−1
j=1 |Θj | + |θj | = r and

the corresponding eigenvalues are the ν(Θ, θ). In particular we observe that
adH2 is semi-simple on every Fr, so that Theorem 8.1 indeed applies. A Z-
linear relation in the frequencies ωk is called a resonance. For this reason,
the monomials zΘζθ for which ν(Θ, θ) = 0 are called resonant monomials.
They are particularly important because they are exactly the ones that are
not in im adH2 and thus, as is clear from the proof of Theorem 8.1, the ones
that cannot be transformed away by Birkhoff normalisation. As Ωk = ωk(1 ≤
k ≤ n), Nishida’s nonresonance condition is a consequence of its analogon for
periodic lattices, that can be formulated as follows:

When |Θ|+ |θ| = 4 and ν(Θ, θ) = 0 then θN
2
−Θ N

2
= 0

and θk − θN−k −Θk + ΘN−k = 0 for each 1 ≤ k < N
2 .

Of course, this condition is not valid either.
On the other hand, one may compute, see [23], that the operator R∗ : G �→

G ◦R acts as follows on the coordinate function zk, ζk:

R∗ : zk �→ exp(2πik/N)zk, ζk �→ exp−(2πik/N)ζk,
zN−k �→ exp(2πik/N)zN−k, ζN−k �→ exp−(2πik/N)ζN−k ,
zN

2
�→ −zN

2
and ζN

2
�→ −ζN

2

And as a result we conclude that, as promised, R∗ acts diagonally with respect
to the monomials zΘζθ as well:

R∗ : zΘζθ �→ exp(2πiμ(Θ, θ)/N) zΘζθ

in which μ is defined as:

μ(Θ, θ) :=
∑

1≤k<N
2

j(Θk + ΘN−k − θk − θN−k) +
N

2
(Θ N

2
− θN

2
) mod N (8.7)
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By Theorem 8.2 we now know that the normal form of the periodic FPU
Hamiltonian must be a linear combination of monomials zΘζθ that are both
resonant and symmetric, i.e. for which ν(Θ, θ) = 0 and μ(Θ, θ) = 0 # $N .
The following theorem was proven in [23]. The proof below is considerably
simpler though.

Theorem 8.4. (i) The set of multi-indices (Θ, θ) ∈ Z
N−1
≥0 for which |Θ| +

|θ| = 3, μ(Θ, θ) = 0 mod N and ν(Θ, θ) = 0 is empty.

(ii) The set of multi-indices (Θ, θ) ∈ Z
N−1
≥0 for which |Θ|+ |θ| = 4, μ(Θ, θ) =

0 mod N and ν(Θ, θ) = 0 is contained in the set defined by the relations
θk − θN−k −Θk + ΘN−k = θN

2
−Θ N

2
= 0.

Proof. (i) Suppose that |Θ| + |θ| = 3 and μ(Θ, θ) = 0 #N$. Then we can
conclude from looking closely at (8.7) and (8.6) that there must be integers
k, l,m �= 0 # $N with k+ l+m = 0 # $N for which ν(Θ, θ) = 2i sin(kπN )+
2i sin( lπN ) + 2i sin(mπN ) = 2i sin(kπN ) + 2i sin( lπN ) − 2i sin(kπN + lπ

N ). Now I
learnt the following trick from Frits Beukers: write 2i sin(kπN ) = x − 1/x
and 2i sin( lπN ) = y − 1/y for some x, y on the complex unit circle. Then
ν(Θ, θ) = x−1/x+y−1/y−xy+1/xy = (1−x)(1−y)(1−xy)/xy. This is
zero only in the trivial cases that x = 1 (k = 0 # $N), y = 1 (l = 0 # $N)
or xy = 1 (m = 0 # $N). But we already knew that k, l,m �= 0 # $N . The
result also follows from the convexity of the sine function.

(ii) The proof of the second statement is similar but more remarkable, and
based on the fact that 2i sinα + 2i sinβ + 2i sinγ − 2i sin(α + β + γ) =
x−1/x+ y−1/y+ z−1/z−xyz+1/xyz = (1−xy)(1−xz)(1− yz)/xyz,
which again is zero in trivial cases only. �

In spite of Theorem 8.4, resonances do exist, as was illustrated by the examples
in Sect. 8.5. A full classification of third- and fourth-order resonance relations
in the FPU eigenvalues is given in the appendix to [23]. Resonance relations
lead to several nontrivial resonant monomials. But according to Theorem 8.4
we now know that these nontrivial resonant monomials are not R-symmetric
and hence cannot occur in the normal form of the periodic FPU lattice. As a
first result, we immediately see now that there are no nonzero elements of F3

that are both resonant and R-symmetric. As a result, H3 = 0 automatically.
To formulate a result for H4, we need to define the following Hopf-

variables. For 1 ≤ k < N
2 , let

ak :=
1

2ωk
(P 2
k + P 2

N−k + ω2
kQ

2
k + ω2

kQ
2
N−k) , bk := QkPN−k −QN−kPk

ck :=
1

2ωk
(P 2
k − P 2

N−k + ω2
kQ

2
k − ω2

kQ
2
N−k) , dk :=

1
ωk

(PkPN−k+ω2
kQkQN−k)

and if N is even
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aN
2

:=
1

2ωN
2

(P 2
N
2

+ ω2
N
2
Q2

N
2
)

Note that H2 can be expressed as

H2 =
∑

1≤k≤ N
2

ωkak

We moreover observe that when N = 2n+2, the identities aN
2

= bk = dk = 0
and ck = ak = Ek/Ωk (1 ≤ k < N

2 ) hold on Fix 〈S〉, so that our definitions
agree with the definition of ak in Theorem 8.3. The following result was proven
in [23] for the periodic FPU lattice. The proof consists of a careful analysis
of the subspace of resonant and 〈R,S〉-symmetric polynomials in F4 with the
help of Theorem 8.4. It is not very deep and we do not repeat it here.

Theorem 8.5. Let H = H2 + H3 + H4 be the periodic FPU Hamilto-
nian (8.4, 8.5). Then there is a unique quartic Birkhoff normal form H =
H2 + H4 of H which is 〈R,S〉-symmetric. For this normal form we have
H3 = 0, whereas H4 is a linear combination of the quartic terms akak′ ,
bkbk′ (1 ≤ k, k′ < N

2 ) and if N is even also aN
2
ak (1 ≤ k ≤ N

2 ) and
dkdN

2 −k − ckcN
2 −k (1 ≤ k ≤ n

4 ).

Corollary 8.2. (Conjectured by Nishida in [20]) Independent of n, α and β,
the quartic Birkhoff normal form H = H2 +H4 of the FPU lattice with fixed
endpoints (8.6) is integrable with integrals Ek.

Proof. By Corollary 8.1, the Birkhoff normal form of (8.6) is the restriction
of the Birkhoff normal form of the periodic lattice with N = 2n+ 2 particles,
to Fix 〈S〉. But on Fix 〈S〉, we have that bk = dk = 0 and ak = ck = Ek/Ωk.
So according to Theorem 8.5, H4 is a quadratic function of the Poisson com-
muting Ek. So, clearly, is H2.

Note that to prove the integrability of the normal form of the fixed endpoint
lattice, we had to use the hidden symmetry of the periodic lattice in which
it is embedded. It must also be remarked here that it is very exceptional
for a high-dimensional resonant Hamiltonian system to have an integrable
normal form.

Let us dwell a little longer on the dynamics of the normal form and consider
the integral map E : T ∗

R
n → R

n that sends (Q,P ) �→ (E1, . . . , En). One
checks that when Ek > 0 for every k, the derivativesDEk(Q,P ) are all linearly
independent. As the level sets of E are moreover compact, the theorem of
Liouville–Arnol’d ensures that for each e = (e1, . . . , en) with ek > 0 for each
k, the level set E−1({e}) is a smooth n-dimensional torus.

To compute the flow on these tori, we transform to action-angle coor-
dinates (Q,P ) �→ (a, ϕ) as follows. Let arg : R

2\{(0, 0)} → R/2πZ be the
argument function, arg : (r cosΦ, r sinΦ) �→ Φ and define
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ϕk = arg(Pk,ΩkQk) , ak = Ek/Ωk =
1

2Ωk
(P 2
k + Ω2

kQ
2
k) , 1 ≤ k ≤ n

With the formula d arg(x, y) = xdy−ydx
x2+y2 , one can verify that (ϕ, a) are canon-

ical coordinates: dQ∧ dP = dϕ∧ da. So in these coordinates the equations of
motion read

ȧk = 0 , ϕ̇k = Ωk +
∂H4(a)
∂ak

This simply defines periodic or quasi-periodic motion. Remark: (ϕ, a) are
sometimes called “symplectic polar coordinates”.

8.7 Nondegeneracy

To verify that the normal form H is nondegenerate, we examine the frequency
map Ω which assigns to each invariant torus the frequencies of the flow on it:

Ω : a �→
(

Ω1 +
∂H4(a)
∂a1

, . . . ,Ωn +
∂H4(a)
∂an

)

The nondegeneracy condition of the KAM theorem requires that Ω be a local
diffeomorphism, which is the case if and only if the constant derivative matrix
∂2H4
∂ak∂ak′ is invertible. To check this, we will unfortunately need to compute
the Birkhoff normal form explicitly, where until now we had been able to
avoid this. In the next Theorem we shall present the normal form of the FPU
Hamiltonian in the case that H3 = 0, i.e. α = 0. This lattice, that has no
cubic terms, is usually referred to as the β-lattice.

Theorem 8.6. (Conjectured by Nishida in [20]) If α = 0, then a quartic
Birkhoff normal form of FPU lattice with fixed endpoints is given by H =
H2 +H4, where

H4 =
β

2n+ 2

⎛

⎝
∑

1≤k<l≤n

ΩkΩl
4

akal +
∑

1≤k≤n

3Ω2
k

32
a2
k

⎞

⎠

Proof. The computation of the normal form had already been performed by
Nishida [20] who obtained exactly the above normal form, but under the
assumption that resonant monomials are absent in the lattice Hamiltonian.
We now know that these monomials can not occur in the Hamiltonian as they
are not R-symmetric in the corresponding periodic lattice. Hence Nishida’s
computation gave the correct answer.

The reader can find similar computations in [15, 16, 23, 26, 27] of the nor-
mal form of the β-lattice with periodic boundary conditions. We can therefore
obtain the result also by substituting ak = ck = Ek/Ωk, bk = dk = 0 on Fix〈S〉
in the normal form of the periodic lattice that was obtained for instance in
theorem 10.1 in [23].
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It is now an easy excercise to prove the invertibility of the matrix ∂2H4
∂ak∂ak′ . Its

nondegeneracy was also checked by Nishida himself by applying elementary
row and column operations to compute the determinant that turns out to be
nonzero. Thus we conclude:

Corollary 8.3. (Conjectured by Nishida in [20]) If α = 0 and β �= 0, then
the integrable quartic Birkhoff normal form H = H2 +H4 of the FPU lattice
with fixed endpoints (8.6) satisfies the Kolmogorov nondegeneracy condition.
Hence almost all low-energy solutions of the FPU lattice with fixed endpoints
are quasi-periodic and move on invariant tori. In fact, the relative measure of
all these tori lying inside the small ball {0 ≤ H ≤ ε}, goes to 1 as ε goes to 0.

Nishida and we chose to compute normal form H2 +H4 only for the β-lattice.
This computation is already quite long, but it becomes even harder when
α �= 0. It should nevertheless also be possible to write down an expression for
the fixed endpoints normal form if α �= 0. For checking Kolmogorov’s condition
this will actually be necessary. We know a priori that the resulting normal
form will be integrable and depends quadratically on the Ek. Preliminary
results by Henrici and Kappeler, partially referred to in [15, 16] seem to prove
exactly what one expects, namely that Kolmogorov’s nondegeneracy condition
is satisfied for “generic” α and β.
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